Sensitivity of r-process nucleosynthesis to the light mass nuclear reactions

Kyungil Kim

CENuM-RULiC Workshop, Nov. 1, 2019

in collaboration with Toshitaka Kajino, Shota Shibagaki (NAOJ) Youngman Kim (IBS)

Motivation

r-process ?

M. Arnould et al. / Physics Reports 450 (2007) 97-213

- Rapid neutron capture process
- High temperature (T>10⁹K)
- High neutron density ($\rho_n > 10^{22} \text{ cm}^3$)
- Near neutron-drip line

- Reaction network with thousands of nuclear reactions
 - > Many of reactions are still uncertain!
- Very sensitive to the temperature and density trajectory of rprocess site
 - Still candidate sites of r-process are under debate!

RAON

¹⁷C(n,γ)¹⁸C Reaction

FIG. 5. (Upper panel) Reaction rate for neutron capture on ${}^{17}C$ with respect to the stellar temperature T_9 . Present data (grey band) are compared to Hauser-Feshbach rates [9] (dashed blue line) and a direct capture model [29] (dotted red line) calculation. In the lower panel the actual contribution of experimental data, i.e., transitions to the ground state in ${}^{18}C$, is displayed.

ref.) M.Heine et al. PRC 95, 014613 (2017)

Introduction

Comparison with Experiment

Magnetohydrodynamic Jet

Institute for Basic Science

Rare Isotop

Science Pri

MHD Jet Trajectories 1

Temperature and Density

초과학연구원

MHD Jet Trajectories 2

Temperature and Density

·**학연구**원

Clemson Code

> 기초과학연구원 Institute for Basic Science

Bradley S. Meyer

https://sourceforge.net/u/mbradle/blog/?page=4

Profile Activity B	log Wiki			
Search Blog	u/mbradle / Blog: Recent posts	ø		
Home	Changing input conditions for our first network calculation			
	Our first network calculation began with 100% of the mass in 1 H and ran at con 150 g/cc. Let's now compare with a detailed standard solar model.	stant temperature of 1.5 x 10^7 K (t9 = 0.015) and density of		
	From the standard solar model table, we see that the center of the Sun (the first data line in the table) has a current temperature of 1.548 x 10^7 K and a mass density of 1.505 x 10^2 g/cc. The current age of the Sun is about 4.56 Gyr, which is about 1.44 x 10^{17} seconds read more			
	Posted by 2012-07-08 Labels: network calculation input pp-chain	2012-07-08 work calculation input pp-chain The JINA Center for the Evolution of the Elements		
	Analyzing a first network calculation In the previous post, I went through the steps to run a simple network calcula nuclear reactions occurring in the center of the Sun, which is burning hydroge hydrogen and helium mass fractions versus time. Change into the analysis directory from the network directory: read more	REACLIB Database		
		you are not logged in [login] [sign up]		
		Welcome to the JINA Reaclib Database!		
	Posted by 🕑 2012-07-07 Labels: network calculation analysis pp-chain	This is a database for nuclear reaction rates to be used in astrophysical model calculations.		News:
		To get help please visit the <u>help page</u> . For more details and REACLIB citation, see <u>Cyburt et al.</u> , ApJS 189 (2010) 240.	ourt of al	ReaclibV2.2 2016-11-14 Submitted By: Steven Sneed
			Juiteral.,	In reactible 2.2 we fixed some reverse

Database:

Contains multiple versions of each rate with one recommended rate. One can find rates using our search engine or by typing in the specific reaction URL [e.g. http://groups.nscl.msu.edu/jina/reaclib/db/na21(p,g)] It is continuously updated as documented on the status/discussion page.

News:

ReaclibV2.2

In reaclib v2.2, we fixed some reverse rate issues. The snapshot is now available.

Server Maintenance

2015-02-20 Submitted By: Richard Cyburt

Expect some outages 2-20-2015 due to server maintenance.

Extended Network

The blue lines are already included in JINA-REACLIB database and the red lines are newly added or modified reaction rates.

r-abundance Results

Averaged r-abundance

기초과학연구원 Institute for Basic Science

Exponential Expansion Model

2.00

Collision Timescale

CRAON

The collision timescale of (n, γ) reaction,

 $\tau_{(n,\gamma)}^{-1} = n_n < \sigma_{(n,\gamma)} v_n >$

au means the mean time of collisions of (n, γ) reaction for the unit density of the isotope.

The inverse of τ means the reaction rate per unit density of the isotope.

cf.) Typical meaning of the collision timescale is the mean time of collisions between two objects in the certain thermodynamic environment.

Results

Sensitivity

Institute for Basic Science

RAON

Sensitivity

Sensitivity

기초과학연구원 Institute for Basic Science

Exponential Expansion Model

2.00

Carbon Yield

- τ_{dyn}=5ms : The production yield of ¹⁶C is larger than other carbon isotopes.
- τ_{dyn}=20, 100ms : The stable carbon has larger yield than others.

$^{13}C(n,\gamma)^{14}C \text{ and } ^{13}C(\alpha,n)^{16}O$

• For every τ_{dyn} , ${}^{13}C(n,\gamma){}^{14}C$ reaction has shorter collision timescale than ${}^{13}C(\alpha,n){}^{16}O$ reaction at the early of rprocess.

¹⁵C(n,γ)¹⁶C and ¹⁵C(α,n)¹⁸O

For only τ_{dyn} =5ms ¹⁵C(n, γ)¹⁶C reaction has shorter collision timescale than ¹⁵C(α ,n)¹⁸O reaction at the early of r-process.

•

- RAON will be a good experimental facility for r-process related study.
- We are testing the sensitivity of C,N,O related reactions and the sensitivity of each trajectories for MHD jet.
- The comparison among the collision timescale of various astrophysical reactions helps us to understand the r-process path.
- The different r-process path means that the importance of a nuclear reaction is different by the r-process scenarios.

Thank you very much for your attention!!!!

