Status of the neutron detector array for LAMPS at RAON

Korea Univ. / CENuM Lee Jong-won for LAMPS collaboration

LAMPS Experiment

Energy of nuclei and nuclear matter $\varepsilon(\rho, \delta)A = Zm_p + Nm_n - B(A, Z)$ $\varepsilon(\rho, \delta) = \varepsilon(\rho, \delta = 0) + \frac{E_{sym}(\rho)\delta^2}{E_{sym}(\rho)\delta^2} + O(\delta^4) + \cdots$ where $a_{sym} \approx E_{sym}(0.6\rho_0)$

LAMPS detector system

Neutron detector array

HARDWARE / Detector construction

Neutron detector production/construction

2018/05 : Prepare assembly 2018/06 : Start assembly

2018/08 : Frame arrived

2018/11: End assembly 2018/12 : Install module

2019/05 : Connect cable &

Setup single crate base DAQ

2019/09 : LAMPS Trigger Electronics 2019/10 : DAQ & Performance test with cosmic

DAQ electronics development (Notice Korea)

TCB/FADC for NDA

LAMPS Trigger Electronics

2014 400MHz FADC

2015 500MHz FADC Box type, 24 channel for test

2017 500MHz FADC Crate/Board type TCB/FADC 24 channel for test

2018 500MHz FADC Crate/Board type TCB/FADC 360 channel

2019 LAMPS Trigger electronics

• 400 MHz FADC

- No sync. with other board
- No proper event ID
- 500 MHz FADC/Box type
 - Connection Error, clock sync error
- 500 MHz FADC/Crate type
 - No sync. method with other crate
- LAMPS Trigger Electronics
 - Complete All DAQ electronics

LAMPS (Neutron detector) DAQ electronics

Software / DAQ and Calibration programming

to code

DAQ structure & control programs

- Data rate : 4 MB/sec
- Semi-real time event build

CAEN HV : control ON/OFF HV, monitor status

Automated Timing / Gain adjustment

Timing Calibration

Get timing offset from timing difference distribution of two pmt signals

$$T' = T - \frac{T_R - T_L}{2}$$

Time difference(~Position) vs ID Cosmic output vs ID 140 [tuno] tuno] 120 120 120 4000 Time Diff [ns] 3500 10³ 3000 Aligned 100 2500 800 0 2000 600 Aligned 1500 400 10 1000 200 500 20 100 40 60 80 -10^{1} 120 100 120 Module ID Module ID 30~60 minutes of data 10 minutes of data \sim

Performances of NDA?

To measure neutron energy and momentum accurately, <u>position and</u> <u>timing resolutions</u> are important.

Detector Performance – Position resolution

Detector Performance - Timing resolution

Time difference between orthogonally overlapped two modules in <u>same layer</u> Sigma of (T_i - T_j) distribution

Mean value : 181 ps -> Expected Timing resolution = 301 ps Consisted with prototype module result (309 ps)

Detector performance – Time Jitter

Time jitter between crates

T[0]-T[2] or T[0]-T[4] for vertical events Distributions were double gaussian distribution σ (Narrow) : 0.1~0.2 ns , ~Timing resolution σ (Wide) : 0.6~0.8 ns ,Under investigation. -> <u>Clocks between crates were synchronized.</u>

Summary

Summary

- 3 Layers of LAMPS neutron detector array were stacked and connected with electronics.
- All LAMPS DAQ electronics were completed and installed.
- Basic Performances of LAMPS neutron detector array were measured.
 - Timing resolution : 301 ps (FWHM)
 - Time jitter between crates : < 200 ps (sigma)
 - Position resolution : 4.5 cm (x), 4.7 cm (y)
- We made one of best neutron detectors in the world!

	LAMPS	MoNA	NEBULAR	LAND
Dimensions(<i>cm</i> ³)	10x10x200	10x10x200	12x12x180	10x10x200
Time resolution(ps)	301	423	376	588
Position resolution (cm)	4.5(x),4.7(y)	5.2	6.1	7.1

Waveform analysis

LAMPS waveform Fitting function : Error Function * Exponential

- [0] * {Tmath::Erf ((x -[1])/[2]) +1 } * Tmath::Exp(-(x-[1])/[3])
 - [0] : Signal Height equiv. value
 - [1] : Signal Timing
 - [2] : Rising constant
 - [3] : Decay constant
- Parameter for light reflection
 - Attenuation
 - Delay
 - Reflection
 - Two time reflection
 - 13 parameters

=>4 parameters / peak

Detector Performance - Attenuation length

$$\log\left(\frac{A_0}{A_1}\right) = -\frac{2}{\lambda}X + \delta$$

Two attenuation lengths of ln(A0/A1) vs X

- Peak ratio : 2.6 m
- Charge ratio : 5.7 m
 (Reflection & Light collection effect)
 BC408 properties
- Light attenuation length 2.1 m
- Bulk light attenuation length 3.8 m

🔂 can

<u>H</u>elp

<u>File Edit View Options Tools</u>

<u>File Edit View Options T</u>ools

Х

Output alignment

Each measurement took 1~2 hr (3~6 hr total)

987.2

13.32