

LAMPS START COUNTER R&D STATUS

MinJung Kweon Inha University

1st RAON User Workshop April 4 2019

Sπ**RIT** Detectors

Example of some physics run trigger rates ~ 50 Hz

KOBRA Start Counter

KOBRA Requirement for plastic detector -Time resolution : ~ 50 ps (RMS) or ~100 ps (FWHM) -Active area : 10 cm x 10 cm (required minimum area = 5 cm x 5 cm)

Performance test with Am-241 -Time resolution ~61ps with light guide, ~44 ps w/o light guide.

Plastic scintillator : EJ-230 PMT : H2431-50

KOBRA Start Counter - GEANT4 Simulation

Mainly to understand the efficiency with light guide. The width was already defined via beam optics.

PROPERTIES	EJ-228	EJ-230
Light Output (% Anthracene)	67	64
Scintillation Efficiency (photons/1 MeV e')	10,200	9,700
Wavelength of Maximum Emission (nm)	391	391
Light Attenuation Length (cm)	-	120
Rise Time (ns)	0.5	0.5
Decay Time (ns)	1.4	1.5
Pulse Width, FWHM (ns)	1.2	1.3
H Atoms per cm ³ (×10 ²²)	5.15	5.15
C Atoms per cm ³ (×10 ²²)	4.69	4.69
Electrons per cm ³ (×10 ²³)	3.33	3.33
Density (g/cm3)	1.023	1.023

Polymer Base	Polyvinyltoluene			
Refractive Index	1.58			
Softening Point	75°C			
Vapor Pressure	Vacuum-compatible			
Coefficient of Linear Expansion	7.8 × 10 ⁵ below 67°C			
Temperature Range	-20°C to 60°C			
Light Output (L.O.) vs. Temperature	At 60°C, L.O. = 95% of that at 20°C No change from -60°C to 20°C			

<그림 2> Plastic scintillator EJ-228 및 EJ-230 특성 (Eljen Technology Data Sheet)

Beam energy loss estimation

Consider a Sn-124 beam with kinetic energy 230 AMeV going through

polyvinyltoluene (EJ230 \Rightarrow 1.023g/cm³). Compute the beam energy loss for the given width.

→ KE = E–M \Rightarrow 230AMeV = E–940 AMeV \Rightarrow E = 1170 AMeV

 \Rightarrow p = 697 AMeV/c \Rightarrow β Y = p/M = 0.74

 $dE/dx(\beta Y = 0.74) \sim 6 MeV cm^2/g$

 $\Delta E/\Delta x = 1.023g/cm^3 x 6 MeVcm^2/g$

~ 6MeV/cm

For 100 μ m width, 0.06 MeV beam energy loss.

Table 24.2: Properties of several inorganic crystal scintillators.

NaI(Tl)	BGO	BaF_2	CsI(Tl)	CsI(pure)	PbWO ₄	${\rm CeF_3}$
Density 3.67	(g cm ⁻³): 7.13	4.89	4.53	4.53	8.28	6.16
Radiatio 2.59	n length (c 1.12	2.05 cm):	1.85	1.85	0.89	1.68
Molière 1 4.5	radius (cm 2.4): 3.4	3.8	3.8	2.2	2.6
$\frac{dE/dx}{4.8}$ (1	MeV/cm) 9.2	(per mip): 6.6	5.6	5.6	13.0	7.9

For several hundred µm width design, the beam energy loss is negligible

Energy Variability Time resolution requirement estimation

(ex. 50keV/u @ 10MeV/u)

chan

1MeV at >18 MeV/nucleon

(<5№

Time resolution requirement estimation

📌 Beam list

IF RI beam list								
		Primary be	am (400 kW)	Production	RI beam eneryg	RI beam Intensity	RI Beam purity	
Fragment	Decay Type	Туре	□□□(MeV/u)	Reaction	(MeV/u)	(pps)	(%)	
132Sn	Beta- decay	238U	200	in-flight fission	133.2	8.21E+06	1.4661	Neutron rich
130Sn	Beta- decay	238U	200	in-flight fission	133.1	3.74E+08	13.6	
124Sn	stable	124Sn	230	transmission	230	8.77E+13	100	Proton rich
112Sn	stable	112Sn	263	transmission	263	8.49E+13	100	
106Sn	Beta+ decay	124Xe	252	fragmentation	155.9	5.31E+08	18.5	Stable
100Sn	Beta+ decay	112Sn	263	fragmentation	161.1	1.41E+01	0.0128	
96Zr	stable	96Zr*	248	transmission	248	1.05E+14	100	
82Cu	Beta- decay	96Zr	248	fragmentation	166.8	2.72E-03	1.2557	
81Cu	Beta- decay	238U	200	in-flight fission	140	5.91E+00	0.000012	10 ¹² beam particles ~10 cm ²
80Cu	Beta- decay	238U	200	in-flight fission	139.9	6.17E+01	0.0002	
79Ni	Beta- decay	96Zr	248	fragmentation	167.1	2.64E-03	1.3223	1.8×10^{10} cm
78Ni	Beta- decay	238U	200	in-flight fission	140.3	8.99E+00	0.000045	
72Ni	Beta- decay	82Se	256	fragmentation	167.5	5.63E+06	77.8	
70Ni	Beta- decay	76Ge	260	fragmentation	169.4	2.57E+08	15.7	$\rho = 10^{12}/1.8 \times 10^{11} \text{ cm}^3 \sim 5/\text{cm}^3$
68Ni	Beta- decay	76Ge	260	fragmentation	168.4	2.65E+09	18.6	
11C	Beta+ decay	160	333	fragmentation	219.4	7.85E+11	100	between beam particles of
10C	Beta+ decay	160	333	fragmentation	215.8	7.75E+10	100	
12B	Beta+ decay	180	299	fragmentation	203	3.61E+11	100	distance 0.5 cm
12Be	Beta- decay	180	299	fragmentation	208.3	3.63E+09	80.67	\Rightarrow 0.5 cm/ (0.6 * 3*10 ¹⁰ cm/s)
11Be	Beta- decay	180	299	fragmentation	206.5	3.07E+10	100	
10Be	Beta- decay	180	299	fragmentation	205.7	1.35E+11	100	~ 30 ps
8He	Beta- decay	180	299	fragmentation	212.3	7.29E+07	100	
3H	Beta- decay	160	333	fragmentation	235.8	8.74E+09	100	

Assume continuous Sn-124 beam of 230 AMeV with the intensity of 10¹² pps.

 $\Rightarrow \beta \sim 0.6$

Outlook

Other trigger detectors to generate trigger logic: TOF detector, and ...

Data Acquisition System: Plan

RAON

Geant4 simulation is being prepared, however at the moment, not sure anymore if it is necessary to be done (if we take the KOBRA specification already studied).