Symmetry energy parameters and nuclear structure in the KIDS framework

KIDS = <u>K</u>orea: <u>I</u>BS-<u>D</u>aegu-<u>S</u>KKU

Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea

Introduction

- Symmetry energy parameters
- Issues: effective mass; correlations between parameters
- KIDS EoS: Nuclear matter
 - Physical motivation
 - Validation: interpolation and extrapolation
- KIDS EDF: Nuclei
 - Effective nucleon mass decoupled from bulk static properties
 - Correlations of observables with parameters explored freely
- Conclusion, prospects

SYMMETRY ENERGY PARAMETERS

Equation of state

Characterization at saturation density by convention

- Symmetric matter:
 - Density ρ₀
 - Binding energy E₀
 - Incompressibility (curvature) K₀
- Asymmetric matter:
 - Symmetry energy J
 - Slope L
 - Curvature K_{sym}
 - Skewness Q_{sym}

Two definitions

Derivative:

$$S_{\text{der}}(\rho) = \left. \frac{1}{2} \frac{\partial^2}{\partial \delta^2} \mathcal{E}(\rho, \delta) \right|_{\delta=0}$$

Difference:

٢

$$S_{\text{diff}}(\rho) = \mathcal{E}(\rho, 1) - (\rho, 0)$$

For the purposes of this talk, and for simplicity, the distinction is not important:

$$S(\rho): S_{\text{diff}}(\rho) \approx S_{\text{der}}(\rho)$$

Expansions around the saturation density:

$$S(\rho) = J + Lx + \frac{1}{2}K_{\text{sym}}x^2 + \frac{1}{6}Q_{\text{sym}}x^3 + \frac{1}{24}R_{\text{sym}}x^4 + O(x^5),$$

* where $x = (\rho - \rho_0)/(3\rho_0)$ and we have defined the slope, curvature, skewness, and kyrtosis parameters:

$$L \equiv 3\rho_0 \frac{d}{d\rho} \mathcal{S}(\rho) \Big|_{\rho=\rho_0}, \qquad \qquad Q_{\text{sym}} \equiv 27\rho_0^3 \frac{d^3}{d\rho^3} \mathcal{S}(\rho) \Big|_{\rho=\rho_0},$$
$$K_{\text{sym}} \equiv 9\rho_0^2 \frac{d^2}{d\rho^2} \frac{\mathcal{S}(\rho)}{\rho} \Big|_{\rho=\rho_0} \qquad \qquad R_{\text{sym}} \equiv 81\rho_0^4 \frac{d^4}{d\rho^4} \mathcal{S}(\rho) \Big|_{\rho=\rho_0}.$$

High-order parameters Ksym, Qsym less constrained; active in both high and low densities

There is one EoS

- Only one point on this graph corresponds to nature
 - Only one point in the multiparameter space $\{\rho_0, e_0, K_0, \dots, J, L, K_{svm}, \}$ Q_{svm} , ...} corresponds to nature
- Nuclear properties shall be compatible with that point.
 - Microscopic calculations for nuclei: Relying on EDFT

100

L (MeV)

40

bр

20

0

Roca-Maza&Paar,PPNP101(2018)96; originally from Lattimer&Steiner, EPJA50(2014)40

Obstacles

Analyses are model dependent Nuclear DFT:

 Only few of the hundreds of EDF models can simultaneously describe nuclear matter and finite nuclei

Dutra et al.,PRC85(12)035201 Stevenson et al., AIP Conf.Proc.1529,262

- while binding energies and radii "prefer" different values for the effective mass
 Bender et al., Rev. Mod. Phys. 75,121
- Assumptions about the effective mass affect extrapolations (in basic Skyrme models)
- Artificial correlations among parameters

Traditional Skyrme functionals

Traditional Skyrme functionals

Traditional Skyrme functionals

Correlations between symmetry energy parameters

Correlations between symmetry energy parameters

Interdependence?

Standard Skyrme: an underdetermined EoS

SNM:

- 4 Skyrme parameters... $\mathcal{E}(\rho, 0) = f\rho^{2/3} + a_0\rho + a_\gamma \rho^{1+\gamma}$
- for 4 EoS parameters $\mathcal{E}_0, \rho_0, K_0, \dots$
- Symmetry energy:
 - 3 additional Skyrme parameters...

$$S(\rho) = g\rho^{2/3} + b_0\rho + b_{\gamma}\rho^{1+\gamma} + b_{\gamma}\rho^{1$$

• For 4+ EoS parameters $J, L, K_{sym}, Q_{sym} \dots$

Trivial relation:

$$K_{\text{sym}} = 3(1+\gamma)(L-3J) + (1+3\gamma)g\rho_0^{2/3} + 2(2-3\gamma)b_2\rho_0^{5/3}$$

15

**(f and g are shorthand for the usu kinetic energy constants)

 $a_2 \rho^{5/3}$

 $b_2
ho^{5/3}$

 $\mu_v \equiv m_{\rm IV}^*/m$

 $\mu_s \equiv m^*/m$

Interdependence?

Symmetry energy parameters

Interdependence?

for L≈40-60MeV and γ=1/3

Indeed, "The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence" [Mondal et al.]

Institute for Basic Science

50

 $[3C_2^0 - L_0] (MeV)$

100

Standard Skyrme: an underdetermined EoS

18

Symmetry energy parameters

Interdependence?

for L≈40-60MeV and γ=1/3

We need to examine all consequential parameters independently Must go beyond Skyrme

"The relations hold for a class of inte ractions with quadratic momentum d ependence and a power-law density dependence"

KIDS FRAMEWORK

1) Homogeneous matter : EOS

2) Finite nuclei: EDF

KIDS FRAMEWORK

1) Homogeneous matter : EOS

2) Finite nuclei: EDF

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

- If I have SNM and PNM, namely c_i(0) and c_i(1) (plus the quadratic approximation) I obtain analytically: {ρ₀,E₀,K₀,Q₀},{J,L,K_{sym},Q_{sym}}
- And vice versa;
- Ansatz motivated by basic QMBT and EFT

for details: PP,Park,Lim,Hyun,Phys. Rev. C 97,014312 (2018)

Why 4 terms? Why low order?

KIDS Ansatz: Expansion in $k_F \sim \rho^{1/3}$

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

* If I have SNM and PNM, namely $c_i(\delta) = \alpha_i + \beta_i \delta^2$ the quadratic approximation) I otherwise $c_i(\delta) = \alpha_i + \beta_i \delta^2$

$$\begin{cases} \rho_{0} \\ \diamond \text{An} \\ \diamond \text{An} \\ \vdots \\ Q_{\text{sym}} - 8\mathcal{T}_{\text{sym} 0} \\ \vdots \\ Q_{3}\rho_{0}^{2} \\ \vdots \\ \beta_{3}\rho_{0}^{2} \\ \vdots \\ \beta_{3}\rho_{0}^{2} \end{bmatrix}$$

Fetter and Walecka, "Quantum theory of many-particle systems"

- Realistic potential: strong repulsive core plus attraction at longer range
- Apply Brueckner methodology in the calculation of nuclear matter energy
- → Result: k_F^2 , k_F^3 , k_F^4 , k_F^5 , k_F^6 , ..., converging
 - Even powers: from repulsive part
 - Odd powers: from both
- →The Fermi momentum is the relevant variable : powers of p^{1/3}

°-RAON

Saturation density is low...

- with respect to (effective) boson exchange range (?)
 - one-pion exchange: vanishing expectation value
 - next boson: rho with $m_{\rho} \sim 775 MeV \sim 4 fm^{-1}$
- Powers of k_F/m_p
- Expansion of E/A in powers of k_F
 - > ... which means, again, powers of $\rho^{1/3}$
 - > The Fermi momentum as the relevant variable
 - k_F³ and k_F⁴ (i.e., coupling~p^{1/3}) known to be important for obtaining saturation [Kaiser et al.,NPA697(2002)]
- Dilute Fermi gas: plus logarithmic terms

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

But how many powers? Which are relevant?Fit to homogeneous matter pseudodata

- Variational Monte Carlo (APR, FP)
- Statistical analysis of fit quality; naturalness

Keep only the important terms! No overtraining

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

 SNM: 3 terms suffice in converging hierarchy (c₃(0)=0)
 PNM: 4 terms necessary (*different preferences*)
 See PP,Park,Lim,Hyun,Phys. Rev. C 97,014312 (2018), Gil,Kim,Hyun,PP,Oh,Phys. Rev. C 100,014312 (2019)

Fits to APR pseudodata

PP,Park,Lim,Hyun,Phys.Rev.C97,014312(2018)

 $[^{t}] \beta$: controls the weight we put on the lower-density data

Fits to APR pseudodata

PP,Park,Lim,Hyun,Phys.Rev.C97,014312(2018)

 $[^{t}] \beta$: controls the weight we put on the lower-density data

Fits to APR pseudodata

PP,Park,Lim,Hyun,Phys.Rev.C97,014312(2018)

 $[^{t}] \beta$: controls the weight we put on the lower-density data

Symmetric nuclear matter:

- Set ρ_0 =0.16 fm⁻³, E₀=-16MeV, K₀ = 240 MeV
- Determine c_{0,1,2}(0) (analytical expressions)
- Leads to Q₀=-373 MeV
- Pure neutron matter:
 - Fit c_{0,1,2,3}(1) to the APR pseudodata for PNM
 - Resulting symmetry-energy parameters:

J=33MeV, L=49MeV, K_{sym} =-157MeV, Q_{sym} =586MeV

Symmetric nuclear matter:

- Set ρ₀=0.16 fm⁻³, Ε₋=-16MeV/K₋ = 240 MeV/
- Determine c_{0,1,2}(0)
- Leads to $Q_0 = -373$
- Pure neutron matter
 - Fit c_{0,1,2,3}(1) to the
 - Resulting symmetries

J=33MeV, L=49MeV,

Gil, PP, Hyun, Oh, PRC99, 064319 (2019)

Extrapolations to dilute and dense matter

We are now free to vary EoS parameters and examine systematiclly effects on NS, etc. ... but also nuclei

KIDS FRAMEWORK

1) Homogeneous matter : EOS

2) Finite nuclei: EDF

Ansatz

powers of Fermi momentum ~
$$\rho^{1/3}$$

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

$$\frac{t_0(1+x_0P_{\sigma})\delta(\mathbf{r}_i - \mathbf{r}_j)}{A} + \frac{1}{2}t_1(1+x_1P_{\sigma})[\delta(\mathbf{r}_i - \mathbf{r}_j)\mathbf{k}^2 + \mathbf{k'}^2\delta((\mathbf{r}_i - \mathbf{r}_j)] + t_2(1+x_2P_{\sigma})\mathbf{k'}\cdot\delta(\mathbf{r}_i - \mathbf{r}_j)\mathbf{k} + \frac{1}{6}t_3(1+x_3P_{\sigma})\rho^{\alpha}\delta(\mathbf{r}_i - \mathbf{r}_j) + iW_0\mathbf{k'}\times\delta(\mathbf{r}_i - \mathbf{r}_j)\mathbf{k}\cdot(\sigma_i - \sigma_j), \quad (3)$$

kinetic energy:
$$\mathcal{T} = \mathcal{T}_p + \mathcal{T}_n$$
; $\mathcal{T}_{p,n} = \frac{3}{5} \frac{\hbar^2}{2m_{p,n}} x_{p,n}^{5/3} (3\pi^2 \rho)^{2/3}$; $x_{p,n} \equiv \rho_{p,n} / \rho$

asymmetry: $c_k(\delta) = \alpha_k + \delta^2 \beta_k$

$$\delta = (
ho_n -
ho_p)/
ho_n$$

Nucl	ear potential	Order	KIDS parameter	Skyrme parameter	
correspondence with Skyrme	\mathcal{E}_0	k_F^3	$c_0(\delta)$	(t_0, x_0)	
	\mathcal{E}_1	k_F^4	$c_1(\delta)$	$(t_3, x_3), \alpha = 1/3$	
	\mathcal{E}_2	k_F^5	$c_2(\delta)$	$(t_1, x_1), (t_2, x_2), (t'_3, x'_3), \alpha' = 2/3$	
	\mathcal{E}_3	k_F^6	$c_3(\delta)$	$(t_3^{\prime\prime},x_3^{\prime\prime}),\alpha^{\prime\prime}=1$	

Skyrme-like parameters by reverse engineering

$$v_{i,j} = (t_0 + y_0 P_{\sigma})\delta(r_{ij}) + \frac{1}{2}(t_1 + y_1 P_{\sigma})[\delta(r_{ij})k^2 + \text{h.c.}] + (t_2 + y_2 P_{\sigma})k' \cdot \delta(r_{ij})k + iW_0 k' \times \delta(r_{ij}) k \cdot (\sigma_i - \sigma_j) + \frac{1}{6}\sum_{n=1}^{3} (t_{3n} + y_{3n} P_{\sigma})\rho^{n/3}\delta(r_{ij}), \qquad (3)$$

$$\begin{split} t_0 &= \frac{8}{3} c_0(0) \,, \quad y_0 = \frac{8}{3} c_0(0) - 4 c_0(1), \\ t_{3n} &= 16 c_n(0) \,, \quad y_{3n} = 16 c_n(0) - 24 c_n(1), \quad (n \neq 2) \\ t_{32} &= 16 c_2(0) - \frac{3}{5} \left(\frac{3}{2} \pi^2\right)^{2/3} \theta_s, \\ y_{32} &= 16 c_2(0) - 24 c_2(1) + \frac{3}{5} (3\pi^2)^{2/3} \left(3\theta_\mu - \frac{\theta_s}{2^{2/3}}\right) \\ \text{with} \end{split}$$

$$\theta_s \equiv 3t_1 + 5t_2 + 4y_2 \,, \quad \theta_\mu \equiv t_1 + 3t_2 - y_1 + 3y_2 \,.$$

unconstrained from homogenous matter \rightarrow vary freely But the total $c_2(0)$, $c_2(1)$ will remain unchanged!

For given KIDS functional $c_i(0)$, $c_i(1)$ (i.e., fixed SNM, PNM)

- Chose effective masses (vary at will)
- $AII t_i$, y_i are now known except t_1, t_2, x_1, x_2
- The two combinations θ_s, θ_μ also known (eff. masses)

Two independent free parameters plus spin-orbit W₀

- Fit only to ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb
- Only bulk properties: E/A, charge radius: 6 data

Proof of concept with KIDS-ad2 ~Taking APR to nuclei~

Binding energy, charge radii

Α

Neutron skin thickness

L and neutron skin thickness

[Roca-Maza et al., PRL106,252501(2013)]

Correlation based on DFT models

L and electric dipole polarizability

Data: Rossi et al., PRL111,232503(2013)

Enhancement factor (isovector m*) decouples from static polarizability 40

INTERRELATIONS OF EOS PARAMETERS?

In progress

 Begin with baseline KIDS-ad2 parameters
 Vary one or more EoS parameters at will: L, K0, Ksym, etc -> Corresponding EDF

- Fit to 6 data (energy and charge radius of ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb) $\chi^{2}_{\text{fit}} = \sum_{d=1}^{6} \left| \frac{O_{i}^{\text{calc}} O_{i}^{\text{exp}}}{O_{i}^{\text{exp}}} \right|^{2}$
- Obtain predictions for the nuclei ¹⁶O, ²⁸O, ⁶⁰Ca, ⁹⁰Zr, ¹⁰⁰Sn, ¹³²Sn, ²⁰⁸Pb, ²¹⁸U

Deviations from known data give a "prediction" error

$$\chi^2_{\text{pred}} = \sum_{d>6} \left| \frac{O_i^{\text{calc}} - O_i^{\text{exp}}}{O_i^{\text{exp}}} \right|^2$$

K_{sym} vs (3J-L)

♦ Reported linear fit: $K_{sym} - 4.97(L-3J) \approx 67 \pm 2$ MeV

If this is physical, fits for various (L,J,K_{sym}) combinations should favor the above value

RAON

K_{sym} vs (3J-L)

♦ Reported linear fit: $K_{sym} - 4.97(L-3J) \approx 67 \pm 2$ MeV

CAON

K₀:240MeV; -K_{sym}:140-220MeV; J=33MeV

45

K_{sym} vs (3J-L)

♦ Reported linear fit: $K_{sym} - 4.97(L-3J) \approx 67 \pm 2$ MeV

~RAON

KIDS functional: direct connection of all EoS parameters of interest with nuclei.

- Study their effects on observables
- Avoid overfitting as well as artificial correlations
- Effective mass decouples from bulk properties
- In progress: K_{sym} , K_{τ} vs L and J
- Eventually, there is only one EoS. Plan: to determine it in the KIDS framework by multiparametric fits (->bootstrapping)
- Exotic nuclei to be included

Thank you!

Supported by the Rare Isotope Science Project of the Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and the National Research Foundation (NRF) of Korea (2013M7A1A1075764).