

Status report of LAMPS TPC

RYU, Min Sang, H.S. LEE, and Y. J. KIM for LAMPS of RISP at IBS

Contents

- Time Projection Chamber for LAMPS
- Performance of TPC prototype
- Test results of large GEM
- Status of LAMPS GEM
- E field distribution of pTPC and LAMPS TPC
- Design of LAMPS TPC (gas vessel and field cage)
- Summary and outlook

Time Projection Chamber for LAMPS

ROAN

Conceptual design of LAMPS

Conceptual design of LAMPS TPC

nstitute for Basic Science

Goal of nuclear matter research

Study of nuclear symmetry energy at supra-saturation density via heavy-ion collision experiment and nuclear reaction study

Detection systems of LAMPS

- Solenoid spectrometer and Neutron detector array
- TPC is the main charged particle tracker in the solenoid spectrometer.

Requirements of LAMPS TPC

- large solid angle acceptance > 3π (24°< Θ <127°, 0°< Φ <360°)
- Good momentum resolution and particle identification (PID) of charge particles

Cross-sectional view of LAMPS TPC

Original design of LAMPS TPC

- 2 x 60 cm field cage (FC)
- 8 GEM sectors with triple-GEMs
- GET system + NARVAL DAQ

Performance of TPC prototype

Specification of TPC prototype

- 1/8 volume of LAMPS TPC
- Drift length: 57 cm
- Triple-GEMs (2:2:2 mm)
- 4 PADs (3x10 and 4x15 mm²)

Test setup of TPC prototype at ELPH (Nov. 1-2 in 2016)

Results of ELPH test

- Max. drift velocity: ~5.25 cm/µs in P-10 ~6.77 cm/µs in P-20

- Positon resolution: ~228 μm with 3x10 mm² PAD \sim 513 μm with 4x15 mm² PAD

RAON

- Transverse diffusion (sim.): <600 $\mu m/\sqrt{cm}$ in P-10 <500 $\mu m/\sqrt{cm}$ in P-20

Results of gain test - Max. gain: ~10⁵ in P-10 ~8*10³ in P-20

Test results of Large GEM

Gaseous Electron Multiplier (GEM)

Hole geometry (pitch - Cu hole - Pl hole):

140 – 70 – 50 µm

top view

side view

<Detector setup> Gas volume: ~56 liters Gap configuration: triple- and quadruple-GEMs Pre-mixed gas: P-10 (Ar:CH₄=90:10) and P-20 Test source: Fe-55 (25 µCi, 2014) Number of pad: 2559 ch (3x10 mm²/pad)

GEM structure	Gas	V _{GEM} (V)	V _{GEM} (V) for discharge event	Test position (XY#)
3LGEM	P-10	350, 360, 370, 375	380, 385, 390	XY1-12
3LGEM	P-20	350, 360, 370, 375		XY3, XY9, XY10
4LGEM	P-10	340, 345, 350, 355, 360	365, 370 V	ХҮЗ
4LGEM	P-20	360, 370, 375		XY3

Large GEN (~1,600 cm²)

<C_{GEM}>=80.65±2.35 nF

I_{Leakage} < 4 nA@500 V

leakage current (A) vs time (s) at V_{GEM}=500 V

I_sam1_GEM1 (A)

_

DN

Status of LAMPS GEM

Production status of LAMPS GEM

- Facility at MECARO will be ready by end of July.
- GEM sample will be delivered and tested in Aug. Sep.
- Final production design will be decided in Oct.
- Then, mass production is going on.

Design of LAMPS GEM (under production)

Readiness of LAMPS GEM test

- GEM Test chamber will be installed before TEST (Aug).
- Leakage current measurement system is ready.
- PAD assembly support is ready.

GEM test chamber

Support for GEM leakage current measurement

Electric field distribution of prototype TPC for LAMPS

- Design parameters of prototype TPC for LAMPS
- Drift length: 57 cm
- Triple-GEMs and PAD
- Strip pitch: 2.5 mm (2 mm strip width + 0.5 mm spacing)
- Spacing between GEM and Field strip: 7.4 and 22.5 mm to inner and outer field cage, respectively, in R axis

Green area (±~1%) means E_R (±2 V/cm) and E_Z (198~202 V/cm).
E field homogeneity in ±1% geometrically over 85% area in (R, Z) plane

Electric field distribution of LAMPS TPC

Design parameter for Electric field study in TPC

- Strip pitch

- Shape of field cage (cylindrical and octagonal)

AON

Electrical field distribution of field cage - Calculation error for E_x, E_y, and E₇: 12.4%

Green area (\pm~2%) means: E_R (\pm 4 V/cm)

 E_{\oplus} (±4 V/cm)

E₇ (196~204 V/cm)

 $\overrightarrow{E_R} = \overrightarrow{E_x} cos\varphi + \overrightarrow{E_y} sin\varphi$

E field at Z=1 cm from GEM

Design of LAMPS TPC (2019.07)

Cathode, Gas vessel, and Bottom

Asymmetry shape of field cage: cylindrical and octagon shapes

Field Cage

Size of field and mirror strips in Z-axis: 2mm Cu + 0.5mm spacing Drift length : 1200 mm

PAD

PAD size: 3x10 mm² Total number of PAD in 8 GEM sectors Channel: 2,712ch/sector \rightarrow 21,696 ch/total Active area: R_{IN} = 105 mm R_{OUT}^{MIN.} 503.5 mm ~ R_{OUT}^{MAX.} 535 mm

STREA THE A

GEM

Total area ~1,000 cm² GEM sector: 8 EA Sub HV sector in a GEM: 10 EA (~100 cm²/sub HV sector) Hole geometry (Cu pitch - Cu hole - PI hole): 140-70-50 μm

GET Electronics

Total number of AsAd board (11EA/GEM sector) = 88EA

RAON

Design of field cage

Field Cage

Size of field and mirror strips in Z-axis: 2mm Cu + 0.5mm spacing 480 field strips and 479 mirror strips for 1200 mm drift length

Inner field strip board: 1EA strip board (660*1199.5 mm²) **Outer field strip board: 8 EA** strip board (414*1199.5 mm²)

1199.5 480 fiek 479 min

Rare Isotope Science Project

DETAIL C SCALE 2 : 1

What we have done and have to do:

RAON

What we have done:

- ♦ TPC prototype test
- ELPH positron beam test in P-10 (Ar:CH₄=90:10) and Ar:CO₂=90:10
- Cosmic ray muon test in P-10 and P-20 (Ar:CH₄=80:20)
- Drift velocity and electric field distortion

◆ Gas electron multiplier (GEM)

- Quality test of GEM foil (140 and 1600 cm²): optical and electrical properties
- Performance test of GEMs: $V_{\text{GEM}^{\prime}}$ gain, # of hits, discharge rate, and so on

What we have got:

- Gain (L3GEM): ~2x10⁴ at P-10 and ~2x10³ at P-20 (L4GEM): ~2x10⁵ at P-10 and ~6x10⁴ at P-20 (Sim., 3GEM): 8.7x10³ in P-10 [JKPS 68 (2016) 645 G. JHANG et al]
- Drift velocity $(v_{\mbox{\tiny D}})$ of over 6 cm/µs in P-20 for 120 cm drift length
- E field homogeneity in $\pm 1\%$ geometrically over 93% area
- + Position resolution (σ_p): ~230 μm with 3x10 mm^2 PADs in P-10
- Transverse diffusion (exp.): 420 $\mu m/\sqrt{cm}$ @ 155 V/cm in P-10

Thank you for your attentions!

What we have to do:

- Fabrication of LAMPS TPC
- Design of gas vessel and field cage by July
- Fabrication by Dec.

◆ Gas electron multiplier (GEM)

- Sample test of GEM (Aug Sep)
- Final design of LAMPS GEM (Oct)

♦ Operational system for TPC

- High voltage supply system (HVPS delivered in July)
- Gas supply system
- Laser calibration system

LAMPS workshop at Yeosu in July 4-6 2019

Cathode