Status report of LAMPS TPC

RYU, Min Sang, H.S. LEE, and Y. J. KIM for LAMPS of RISP at IBS

Contents

- Time Projection Chamber for LAMPS
- Performance of TPC prototype
- Electric field distribution of LAMPS TPC
- Design of LAMPS TPC
- Design of field cage and PAD
- Large GEM to LAMPS GEM
- High voltage supply system for TPC
- Working plan for LAMPS in 2019~2021

Time Projection Chamber for LAMPS

Goal of nuclear matter research

- Study of nuclear symmetry energy at supra-saturation density via heavy-ion collision experiment and nuclear reaction study

Detection systems of LAMPS

- Solenoid Spectrometer and Neutron Detector Array
- Time Projection chamber (TPC): main charged particle tracker

Conceptual design of LAMPS TPC

Target Point

Pad Chambers

3GEMs

PAD

Initial design of LAMPS TPC

- 2 x 60 cm field cage (FC)
- 8 GEM sectors with triple-GEMs
- ~ 100,000 PADs

Requirements of LAMPS TPC

- large solid angle acceptance > 3π (24° < Θ <127°, 0° < Φ <360°)
- Good momentum resolution and particle identification (PID) of charge particles

Design parameter of TPC components

- Triple-GEMs: ~8.7x103 gain in P-10 [JKPS 68 (2016) 645 G. JHANG et al]
- \bullet PAD: position resolution ($\sigma_{_{D}})$ of 200-300 μm
- Field cage: drift velocity (v_D) of over 5 cm/µs

E field homogeneity in ±1%

Performance of TPC prototype

Specification of TPC prototype

- 1/8 volume of LAMPS TPC
- Drift length: 57 cm
- Triple-GEMs (2:2:2 mm)
- 4 PADs (3x10 and 4x15 mm²)

- Electrical field distribution of field cage of TPC prototype
- Green area ($\pm \sim 1\%$) means E_{R} (± 2 V/cm) and E_{7} (198~202 V/cm).
- Distorted area roughly ~15% for E (±~1%) in (R, Z) plane

V_{GEM} = 345 V

• ELPH P10

muon P26

Sim. P10

★ Sim. P20

250

200

225

¥ Sim. ArCO2

E_{FC} (V/cm)

ELPH ArCO2 ▲ muon P10

6000

5000F

4000

3000

1000

010

2000 3x10 mm² pad

-5

0

õ

Position resolution

res2 2

24322

-0.5103

2.656

1683 / 7

5981±73.1

-0.01105 ± 0.00193

 0.2275 ± 0.0025

10

Entries

Mean

RMS

 χ^2 / ndf

Constant

Mean

Sigma

 $\sigma_{\rm p} = 228 \ \mu m$

5

Residual (mm)

f_{writting}: 25 MHz (40 ns/tbuck) NIM VME **HVPS**

Test setup of TPC prototype at ELPH (Nov. 1-2 in 2016)

- Test results of TPC prototype Max. gain: ~10⁵ in P-10 ~8*103 in P-20
- Max. drift velocity: ~5.25 cm/µs in P-10 ~6.77 cm/µs in P-20
- Positon resolution: ~228 µm with 3x10 mm² PAD ~513 μ m with 4x15 mm² PAD
- Transverse diffusion: <600 µm/√cm in P-10 <500 µm/√cm in P-20

New design parameters for TPC

- Gain of triple GEMs ~10⁴ in P-20
- Drift velocity over 6 cm/µs for 120 cm drift length
- Position resolution (σ_n) ~230 μ m with 3x10 mm²

Electric field distribution of LAMPS TPC

Electrical field distribution of field cage

Design of LAMPS TPC

Field Cage

Cylindrical (inner) and octagonal (outer) structures Size of field and mirror strips in Z-axis: 2mm Cu + 0.5mm spacing Drift length: 1,200 mm

GEM

Total area ~1,000 cm² GEM sector: 8 EA Sub HV sector in a GEM: 10 EA (~100 cm²/sub HV sector) Hole geometry (Cu pitch - Cu hole - PI hole): 140-70-50 μm

PAD

PAD size: $3x10 \text{ mm}^2$ Total number of PAD in 8 GEM sectors (2,618ch/sector) = 20,944ch Active area: $R_{IN} = 105 \text{ mm}$ $R_{OUT}^{MIN.} 503.5 \text{ mm} \sim R_{OUT}^{MAX.} 535 \text{ mm}$

Cathode, Gas vessel, and Bottom

 Φ_{IN} of gas vessel: 170 mm ($\Phi_{BEAM_{PIPE}}$: 160 mm) Gas & HV connection, Calibration system, Moving support

GET Electronics Total number of AsAd (11 EA/GEM sector) = 88 EA

Design of TPC parts

Field Cage

Size of field and mirror strips in Z-axis: 2mm Cu + 0.5mm spacing 480 field strips and 479 mirror strips for 1200 mm drift length

Inner field strip board: 1EA strip board (660*1199.5 mm²) Outer field strip board: 8 EA strip board (414*1199.5 mm²)

Field strip out

PAD

PAD size: $3x10 \text{ mm}^2$ Number of PAD per GEM sector: 2,618 Total number of PAD= 20,944ch Active area: $R_{IN} = 105 \text{ mm}$ $R_{OUT}^{MIN.}$ 503.5 mm ~ $R_{OUT}^{MAX.}$ 535 mm

DETAIL A SCALE 2:1

Update the drawing of Cathode, Gas vessel, Bottom, Gas & HV connection, Calibration system, moving support

DETAIL C SCALE 2 : 1

Large GEM to LAMPS GEM

 ~ 1600

<C_{GEM}>=80.65±2.35 nF

Gaseous Electron Multiplier (GEM)

Hole geometry (pitch - Cu hole - PI hole):

140 – 70 – 50 µm

top view

side view

<Detector setup> Gas volume: ~56 liters Gap configuration: triple- and quadruple-GEMs **Pre-mixed gas:** P-10 (Ar:CH₄=90:10) and P-20 **Test source:** Fe-55 (25 µCi, 2014) Number of pad: 2559 ch (3x10 mm²/pad)

//____

<G_{L3GEM-P10}> ± 20%

<G_{L3GEM-P20}> ± 26%

	GEM structure	Gas	V _{GEM} (V)	discharge event	Test position (XY#)
]	3LGEM	P-10	350, 360, 370, 375	380, 385, 390	XY1-12
	3LGEM	P-20	350, 360, 370, 375		XY3, XY9, XY10
	4LGEM	P-10	340, 345, 350, 355, 360	365, 370 V	ХҮЗ
	4LGEM	P-20	360, 370, 375		ХҮЗ

c V_{DEN}= 350 V at all (X, Y) in P-10 with B_{nuc}(1 pC) $\begin{array}{l} & \sum\limits_{V \in M} {}^{000} \text{M} & \text$ open 350 V at (XV3, XY9, XY10) in P-20 with G.

1.55

. 55

105.55

lain with ¹¹Fe (25 µCi

Gain uniformity

• Position resolution (σ_n) ~230 μ m with 3x10 mm²

High voltage supply system for TPC

TPC

640 channels of HV system

- 10 sub HV sectors in a GEM

- 8 GEM sectors

- Max. 4 GEM layers - 2 electrodes for a GEM High voltage system for TPC

- High voltage power supply (HVPS) GEM mode programmable bottom voltage (V_{bottom}) → to minimize the E field distortion in FC
- High voltage distribution system (HVDS)

GEM mode

 V_{bottom} can be set for a certain sub-HV sector \rightarrow to minimize the E field distortion in FC

Working plan for LAMPS in 2019~2021

- Quality test of GEM foil (1,000 cm²): optical and electrical properties by early of 2020
- Performance test of GEMs: V_{GEM}, gain, # of hits, discharge rate and etc by 2020

♦ LAMPS TPC

- Update drawing of TPC and moving support
- Fabrication and assembly by Oct in 2019
- Operation test by 2020

♦ Operation system for TPC

- High voltage supply system in 2019
- Gas supply system by early of 2021

◆ Installation and trial run of LAMPS in 2021

What we have to do for LAMPS TPC now?

- Need better performance of triple-GEMs in P-20
- Update drawing of cathode, gas vessel, bottom, gas & HV connection, calibration system and beam line alignment on moving support
- Installation of HV supply and gas supply systems

Thank you for your attentions!