Position dependency

Choi Jae Min

Landau convoluted with Gaussian

- According to Bethe-Bloch formula, energy deposit on thin scintillator follows the Landau distribution.
- The statistical functions such as the capture in WLS process and reflection follow the Gaussian distribution.
- Therefore, Landau convoluted with Gaussians should be used as fitting function.
- Because it is impossible to convolute from –infinite to +infinite, integration range is from +-5sigma.

Reference

NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	2.57279e+03	4.16289e+01	5.27154e-02	-1.34135e-06
2	MPV	3.66461e+01	1.10169e-01	2.46157e-04	4.90414e-04
3	Sigma	3.47939e+00	4.38730e-02	4.84967e-06	-5.33688e-02

Fitting Results – 26.5 mm

Fitting Results – 227 mm

Fitting Results – 428 mm

Fitting Results – 628 mm

Fitting Results – 829 mm

Fitting Results – 1030 mm

Fitting Results – 1231 mm

Fitting Results – 1432 mm

Attenuation Graph

Fitting result with exp([0]+[1]*x)

Fitting attenuation graph

- Well fitted function : [0]*Tmath::Exp(x/[1])+[2]
- >> 기본적으로 위치와 관계없이 scintillator 내부에서 반사되어 균일하게 있는 빛이 있고, 추가적으로 위치에 관계된 exponential 함수가 존재한다?

Fitting results

Cosmic ray test

Cosmic ray test

Fitting Results – 26.5 mm

Fitting Results – 227 mm

MPPC4_hist MPPC4_hist 1000 Entries 79.05 Mean 39.74 Std Dev χ^2 / ndf 167.7 / 160 11 ± 1.1 width MPV 53.55 ± 0.98 normalization_factor 942.6 ± 33.2 5.186 ± 4.313 sigma_gaussian

Fitting Results – 428 mm

Fitting Results – 628 mm

21

Fitting Results – 829 mm

Fitting Results – 1030 mm

MPPC4_hist MPPC4 hist 1000 Entries 30 Mean 55.6 27.29 Std Dev χ^2 / ndf 91.45 / 122 25 5.397 ± 0.658 width 40.85 ± 0.77 MPV 20 normalization factor 986 ± 33.8 8.882 ± 1.172 sigma gaussian E 15 10 5 200 250 300 350

Fitting Results – 1231 mm

Fitting Results – 1432 mm

Fitting function

• Landau convoluted with Gaussian + cosine^2 ?

Landau distribtuion

6mm scintillator

Landau Convoluted with Gaussian

Thinner Scintillator

1mm scintillator with Landau distribution

1mm scintillator with Lan-Gau distribution

Attenuation Graph

The number of photon 70E position[mm]

Attenuation

MPPC arriving point

Number of pixels

- In S13360-6050PE,
 photosensitive area is 6.0 mm
 X 6.0 mm
- The number of pixels is 14,400.
- Therefore, the size of one pixel is 0.05 mm X 0.05 mm

Example for arriving point

Particle : mu+, Energy : 1.0 GeV, Position 800 mm ~ 858 mm, azimuthal angle : random 2019-11-27

Example for arriving point

Particle: mu+, Energy : 1.0 GeV, Position 829 mm, azimuthal angle : random

MPPC efficiency(before)

- According to data simulated before, MPPC efficiency is more than 99% when the number of photon arrived MPPC is about 50.
- However, in previous slide, efficiency of MPPC is 95%.
- Therefore, we can confirm that it is better to get position where photon is dead.

Data Scan

Depth photon is dead

**	*******	k i k i	*****	******	***********	*****
	Row	*	Wavelengt *	Arrivetim	* dead_posi '	dead_posi * dead_posi *
**	******	k **	*****	******	************	*****
	2	*	495.66482 *	27.049994	* -0.075 [•]	0.0122921 * 2.7621747 *
	3	*	531.22641 *	18.306062	* -0.075200 ^{>}	-1.388803 * -1.855543 *
	5	*	472.47511 *	12.595095	* 0.0983981 *	-2.359289 * 0.5927234 *
	9	*	509.12506 *	99.941598	* 0.2301079 '	-0.258006 * -2.658202 *
	10	*	495.27173 *	21.649616	* -0.075 [;]	-1.657591 * -1.481539 *
	12	*	495.26786 *	71.416503	* -0.075 [;]	-2.907309 * 0.5969254 *
	19	*	551.01655 *	10.969933	* -0.075 [;]	-1.397039 * 2.8960944 *
	22	*	527.81229 *	8.3054370	* 0.0891191 *	1.3068163 * -2.127291 *
	23	*	553.46687 *	23.514839	* -0.209955 [*]	-2.835119 * 2.6596897 *
	29	*	472.60051 *	42.094204	* 0.0012118 *	-1.578086 * 1.1850482 *
	30	*	519.46118 *	14.115362	* -0.075 [;]	-1.272596 * 1.4315671 *
	31	*	502.58047 *	21.832017	* -0.075 [;]	1.2669938 * 2.2949582 *
	33	*	504.60251 *	20.508904	* -0.232719 [*]	1.8468322 * 0.2017119 *
	34	*	485.16280 *	18.657337	[،] -0.075	-2.521131 * 1.9159489 *
	41	*	521.12003 *	34.111081	[،] -0.075	2.1748794 * 0.1536476 *
	43	*	512.25806 *	6.6447434	[،] -0.075	-1.420504 * -1.132903 *
	46	*	540.35791 *	28.825205	* -0.244389 *	1.3976723 * -0.809266 *
	48	*	496.66462 *	16.786160	[،] -0.075	0.3406711 * -1.240764 *
	50	*	546.25941 *	30.050188	* -0.044862 ^{>}	1.6694592 * -0.468463 *
	65	*	490.43407 *	10.241898	[،] -0.075	2,9068549 * -2,260504 *
	72	*	498.79542 *	16.935684	^د -0.075	-1.830788 * 1.5346593 *
	78	*	511.92738 *	15.117979	· -0.075 ·	1.1895995 * -1.113880 *
	80	*	493.91074 *	24.131770	· -0.075 ·	-1.541462 * 1.0157293 *
	82	*	518.47158 *	38.027399	[،] -0.075	-1.164062 * 2.6960930 *

- Geant4 is not support photoelectric effect for optical photon.
- Therefore, we should kill optical photon is StackingAction.
- When simulating in the above way, there is depth where photon is dead.
- Therefore, assuming photons die at the surface of MPPC, we should recalculate position photons die by making use of momentum of photons.

Cross talk

- Since there is depth where photon is dead, I wondered if we could calculate the cross talk through it.
- However, the cross talk occurs in the near infrared region(780 nm ~ 3000 nm), and considering the emission spectrum of WLS fiber, there is no near infrared photon.

Data Analysis

• The number of photon arrived MPPC will be determined in ROOT not

Geant4.

****	*****	0	****	*****	**:	******	***	*****	koko	*****	**	*****	**	******
*	Row		Wave	elengt		Arrivetim		dead_posi		dead_posi	*	dead_posi		<pre>momentum_ * momentum_ * momentum_ *</pre>
****	*****	0	****	*****	**:	******	***	********	**	*******	**	*****	***	******
*	0		560	48351		71.965582		-0.075		-0.649449) *	2.9231450		-2.07e-06 * 7.534e-07 * 1.603e-07 *
*	1		518	.24077		13.875503		-0.075		0.9502090) *	0.0116243		-1.85e-06 * 1.257e-06 * -8.46e-07 *
*	2		492	.55629		25.910957		-0.075		2.8250027	*	1.0306999		-9.12e-07 * 3.995e-07 * -2.31e-06 *
*	4		528	.11195		19.198898		-0.075		2.2439909) *	1.3184417		-1.90e-06 * 1.359e-06 * -1.69e-07 *
*	7	*	504	.56695		21.874213	*	-0.153379		1.2662653	*	-2.214478		4.234e-07 * -1.61e-07 * 2.415e-06 *
*	8		508	.88691		26.200614		-0.075		1.8785349) *	1.6880751		-2.03e-06 * 1.312e-06 * -2.41e-07 *
*	10		493	.45756		54.815216		-0.075		1.0088101	*	0.4735277		-2.27e-06 * -7.78e-07 * 7.361e-07 *
*	12		495	.09974		17.427271		-0.075		0.5853046	; *	2.4509685		-2.03e-06 * 2.306e-07 * -1.43e-06 *
*	13		498	.93336		19.035595		-0.075		1.0443120) *	2.1531335		-1.92e-06 * 1.056e-06 * 1.166e-06 *
*	15	*	488	8.3682		11.909960	*	-0.133339		2.1695136	; *	0.7952705		2.078e-06 * 1.370e-06 * -4.96e-07 *
*	23		517	.50741		11.452656		-0.075		-0.024315	; *	1.3109646		-1.93e-06 * -1.28e-06 * -5.68e-07 *
*	25		504	.40479		22.671361		-0.075		-0.658538	*	0.8280741		-3.18e-07 * -2.03e-06 * -1.34e-06 *
*	28		465	.48225		20.288492		-0.075		-1.528035	; *	-0.847632		-2.05e-06 * 8.315e-07 * 1.480e-06 *
*	30	*	503	.92544		6.2938861	*	-0.075		-2.655682	*	-1.644626		-1.94e-06 * -1.34e-06 * -6.84e-07 *
*	31	*	608	.60047		8.8473556	*	-0.075		1.6236828	*	0.7445573		-1.71e-06 * -5.35e-07 * 9.589e-07 *
*	32	*	530	.72385	*	8.4291598		-0.075	*	-2.021257	*	-2.582119		-2.03e-06 * 5.567e-07 * 1.002e-06 *
*	33		484	24632		77.985204		-0.075		-2.203228	*	-0.071967		-2.03e-06 * 5.689e-07 * 1.445e-06 *
*	36	*	527	68452		26.261815	*	-0.075	*	-1.744257	*	2.0020439		-2.13e-06 * 9.430e-07 * 2.371e-07 *
*	38	*	509	.90611		9.1050996	*	0.0099399		-0.620876	; *	-0.911878		2.012e-06 * 8.530e-07 * 1.064e-06 *
*	40	*	485	.32905	*	65.176445	*	-0.075	*	-0.382308	*	0.9137909	*	-2.20e-06 * -1.20e-06 * -4.77e-07 *
*	41	*	508	.66371		55.736296	*	-0.075		-2.042421	*	1.3315787	*	-2.01e-06 * 6.079e-08 * 1.372e-06 *
*	58	*	472	.97339		12.920871	*	-0.234805	*	-2.438266	j *	2.9664514	*	7.168e-07 * 7.793e-07 * 2.398e-06 *
*	60		499	.52220		30.305132		-0.075		1.2676407	*	0.8601464		-2.05e-06 * 1.377e-06 * 1.623e-07 *
*	61	*	502	.75405		18.871037	*	0.2166104		-1.221738	*	0.9411304		1.956e-06 * -6.64e-07 * -1.34e-06 *
*	62		498	.95530		15.827229		-0.075		-1.649911	*	0.7836663		-2.23e-06 * 1.073e-06 * 1.785e-07 *

Effect of Aluminum box

Sensitive Detector for Aluminum box

k	Row	*	Al	_box1	C	*	Al	_box1	d	*
***	*****	***	***	*****	***	k i ko	es es es	*****	***	k *
¢	() *		44	34	*			Θ	*

<pre>root [3] t5 -> GetEntries()</pre>
(long long) 153
<pre>root [4] t7 -> GetEntries()</pre>
(long long) 225
root [5] t9 -> GetEntries()
(long long) 124
<pre>root [6] t11 -> GetEntries()</pre>
(long lon <u>g</u>) 228

- There are too many photons which hit aluminum box.
- Considering the number of photon which arrived MPPC, 3500 of photons are from scintillator.
- Therefore, select the photon which is not from scintillator.