
WLS fiber Study

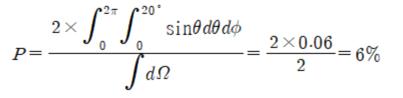
Jae Min Choi

Trapping Efficiency

Trapping Efficiency

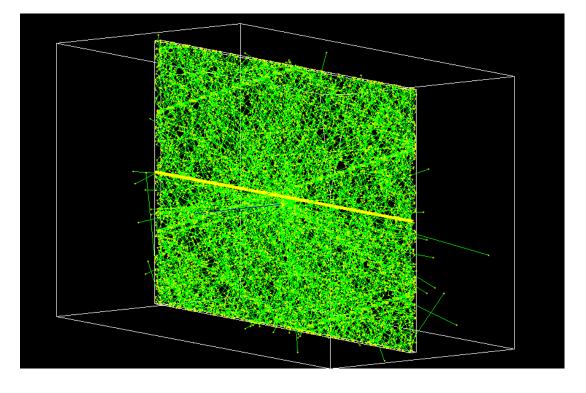
Cross-section and Cladding Thickness

1) In some cases, cladding thickness T is 3% of D. 2) In some cases, cladding thickness T is 6% of D, To and Ti are both 3% of D.

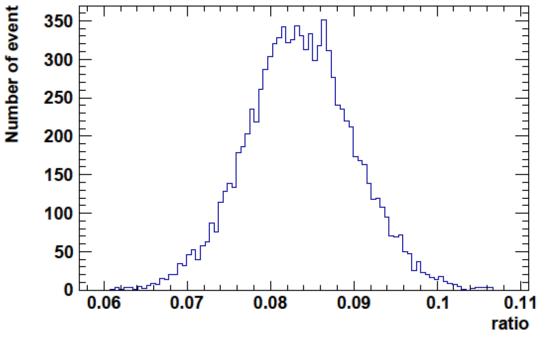

<Properties table of Y-11>

Critical Angle for total reflection in WLS fiber

- Refractive Index of core : 1.59
- Refractive index of cladding : 1.49


critical angle $\theta_c = \sin^{-1}(\frac{1.49}{1.59}) = 69.57$ °

Assume that there is no attenuation and emission occurs isotropically. Probability for total reflection is



<Calculated results of Trapping Efficiency>

Probability for total reflection

Probability of total reflection

Ratio between the number of WLS process and the number of photon arrived at MPPC

Average of absorption ratio 0.084 is larger than our calculation 0.06.

New Calculation

Equation for total reflection

• As a results

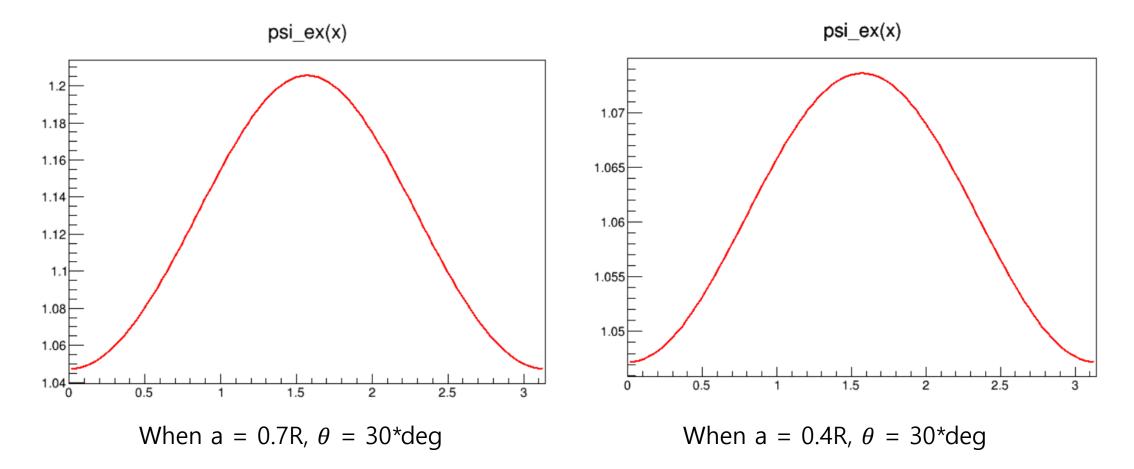
$$\sin\theta = \frac{\cos\psi_c}{1 - \frac{a^2}{R^2}\sin^2\varphi}$$

Probability for total reflection in (a, 0, 0)

• And by using that

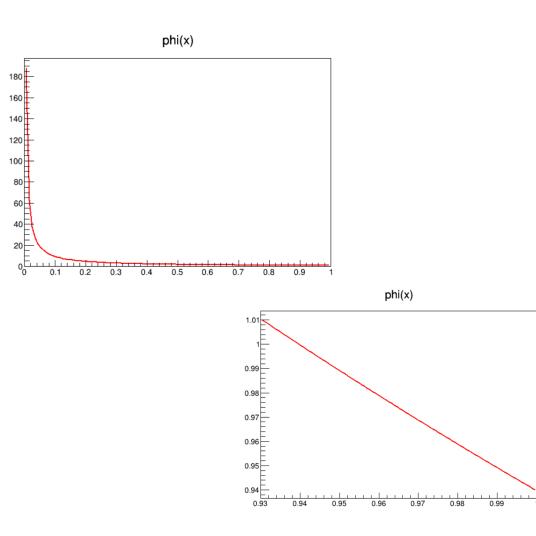
$$P = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{\sin^2 \psi_c - (\frac{a}{R})^2 \sin^2 \phi}{1 - (\frac{a}{R})^2 \sin^2 \phi}} \, d\phi$$

(this result is for one direction)


Value of a	Value of $P = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{\sin^2 \psi_c - (\frac{a}{R})^2 \sin^2 \phi}{1 - (\frac{a}{R})^2 \sin^2 \phi}} d\phi$
0.1 R	0.03161
0.2 R	0.03212
0.3 R	0.03302
0.4 R	0.03443
0.5 R	0.03652
0.6 R	0.03959
0.7 R	0.04479
0.8 R	0.05414
0.9 R	0.07899

Range of φ

- When a->R and φ -> $\pi/2$, the value of integration goes to infinity.
- To avoid this, let's specify the range of φ , that is, setting upper bound of φ as a function of a.


$$-\frac{R}{a}sin\psi_{c} \leq \sin\phi \leq \frac{R}{a}sin\psi_{c}$$

Angle with normal vector of cylinder

Even if the polar angle is the same, the value at the peak changes depending on the position a. Critical angle is about 1.2217.

9

Integration

• However, we cannot get results of indefinite integral.

Reflectivity

Fresnel's Equation

- Reflectivity can be calculated by Fresnel's equation.
- If direction of polarization is parallel to incident plane, transmittance and reflectivity is as follows

$$R = \left(\frac{\alpha - \beta}{\alpha + \beta}\right)^2 \quad \text{and} \quad T = \alpha \beta \left(\frac{2}{\alpha + \beta}\right)^2$$
$$\left(\alpha = \frac{\cos \theta_t}{\cos \theta_i} \quad \text{and} \quad \beta = \frac{\mu_1 n_2}{\mu_2 n_1}\right)$$

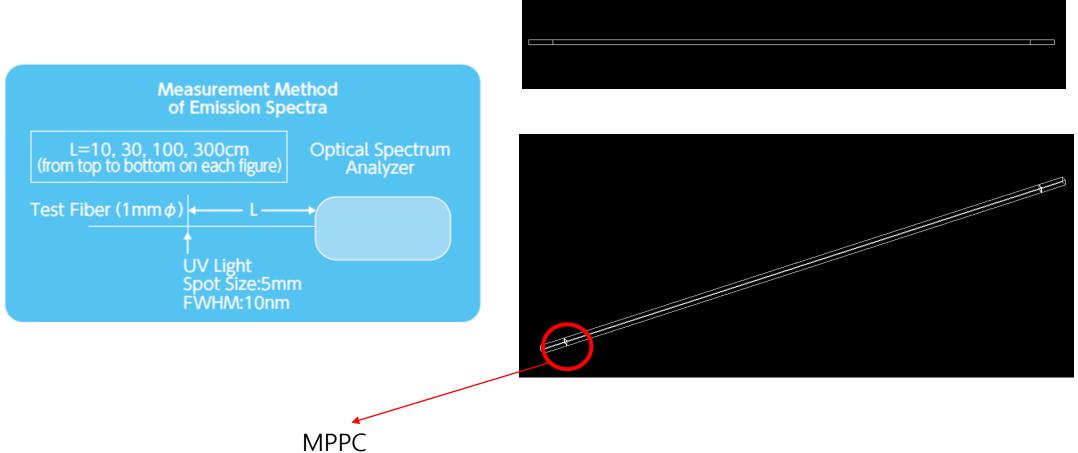
Fresnel's Equation

• If direction of polarization is perpendicular to incident plane, transmittance and reflectivity is as follows

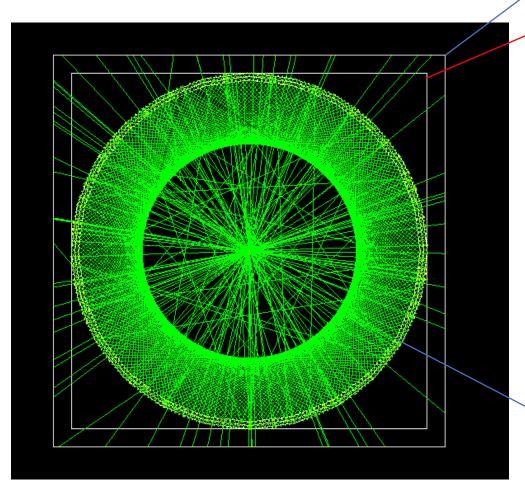
$$R = \left(\frac{1-\alpha\beta}{1+\alpha\beta}\right)^2 \quad \text{and} \quad T = \alpha\beta\left(\frac{2}{1+\alpha\beta}\right)^2$$
$$\left(\alpha = \frac{\cos\theta_t}{\cos\theta_i} \quad \text{and} \quad \beta = \frac{\mu_1 n_2}{\mu_2 n_1}\right)$$

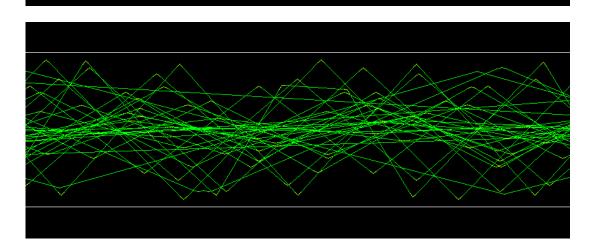
- Anyway, when total internal reflection occurs, α goes to 0, so R is equal to 1.
- That is, reflectivity is equal to 1.

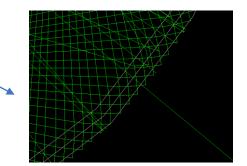
Fresnel's Equation


- By previous slide, we can check that Reflectivity is function of incident angle, refractive index of two medium.
- In Geant4, total reflection is realized as G4OpBoundaryProcess, and it means that we don't have to set refractivity.
- Reflectivity will be determined automatically.

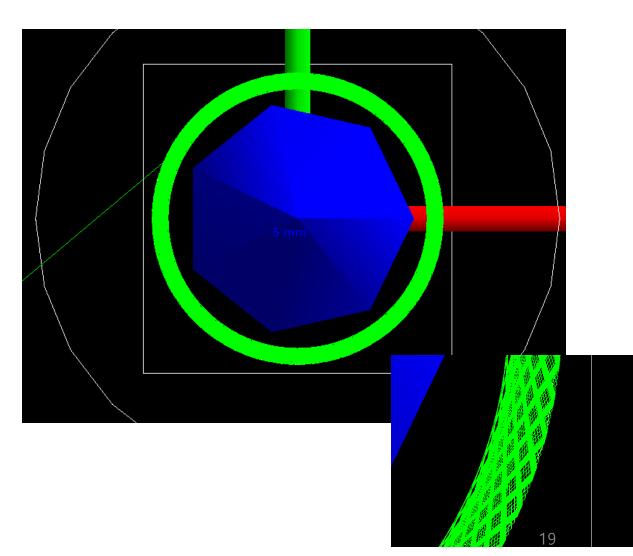
Mail from Kuraray


Osamu.Shinji@kuraray.com Naoya.Sato, Yuuki.Imamiya, Shota.Moriyama, 나, Katsuhiro.Fujita에게 ㅋ	(로) 2019. 7. 16. 오후 6:10 (16시간 전) 🏠 🔦
文₄ 영어 ▾ > 한국어 ▾ 메일번역	영어 번역 안함 ×
Dear Jae Min Choi-san,	
Thank you for your interesting for our fibers and your questions.	
I am one of technicals of KURARAY's schintillating fiber for a long years.	
I am trying to answer here to your questions, too.	
Q1.	
I cannot understand the meaning of your 'coating'.	
Usually we uses 'coating' as a white coat or a black coat, for example, mainly in order to block and remove a cross-talk light from the neighbor fibers laying side-by-side.	
If you must interested in our multi-cladding Y-11 fiber, our multi-cladding fiber has two cladding layers that have lower refractive indexes than the core polystyrene.	
Therefore, our fiber can be an optical fiber in which optical rays can propagate by total reflection (reflection ratio is 100% thioretically) based on refractive index difference between of	core and cladding. The claddings here are not called as 'coating', as you know.
If you means 'coating' as a white paint or a aluminum spattering, both of them will be almost no use to increase light yield or fiber NA, although it is not easy to explain the reasons.	
Q2.	
The trapping efficiency described in our web site is not observed value, but only one of simple calculations.	
When one point at the center axe of WLS fiber emits green lights by a blue light irradiation from an outside scintillator,	
the green light can be expected to spread spherically and isotropically.	
Then the emitted lights between 0 and 26.7 degrees only can propagate to one fiber end.	
This plus-minus 26.7 degrees of solid angle in circular cone vs. 4*PI (sphere) is correspond to 5.4% for our multi-cladding fiber.	
This is our simple calculation as 5.4%.	
If the emission point is not on the center of fiber axe, the value will be a different one.	
Q3.	
I guess you must need an information how the WLS Y-11 fiber can absorb the blue light that comes from outside of the fiber.	
You can refer to the attached file, I believe it will be great helpful for you.	
If any more questions or requests, please let me know.	
Thank you very much,	
Osamu Shinji	
KURARAY	


- We can confirm this by mail from Kuraray.
- There is no white paint or aluminum spattering for increasing reflectivitiy.


Design of simulation

Results of Simulation WorldPV



MPPC

From the side near the center of the circle, surface of core, surface of cladding1(PMMA), surface of cladding2(FP)

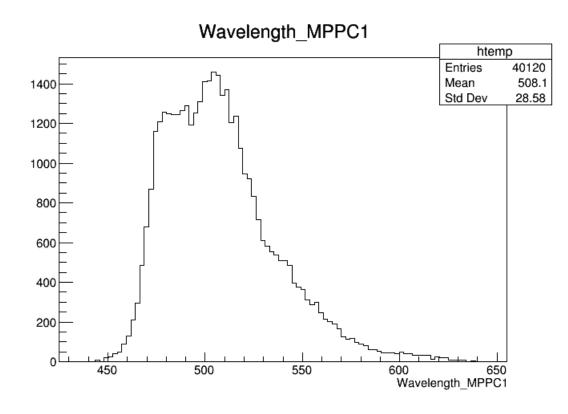
Visualization of example, WLS

- Compare the visualization results in previous slide, this is reasonable result.
- At least, total reflection work well.

Results of Simulation

- In visualization, photon looks like going out of fiber.
- However, by setting /tracking/verbose 2, we confirm that photon is reflected in WLS fiber.
- Some is between 1st and 2nd cladding and other is among core, 1st and 2nd cladding.
- Or going out of world.

	*******				exercise and	*******	********	arent ID = 0
					1-1-1-1			
Step# 0	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume ProcName WLS_fiber_corePV initStep WLS_fiber_corePV 0pWLS
1	0	0	-49.9	2.888-00	0	14 1	14 1	WLS_fiber_corePV_Initstep
÷	list	of 2ndar	105 - #Sr	2.00e-00	= 1(Rest	= 0 Along	= 0 Post=	1), #SpawnTotal= 1 ·····
	0	01 21001	0 -3	5.8 2.41e-	06	onticalpho	aton	r, spamilocat-
								EndOf2ndaries Info
******	********	********	********	*********	*******	********	*********	******************************
* G4Tra	ack Inform	mation:	Particle	e = optical	photon,	Track II	0 = 205,	Parent ID = 2
******	********	********	********	*********	*******	********	*********	***********************************
Step#	X(mm)	Y(mm)	7(mm)	KinE(MeV)	dE (MeV)	Stanl and	Tracki and	NextVolume ProcName
0	0	0		2.41e-06		o cepterig	Ő.	WIS fiber careBV initSten
ĭ	0.187	-0.442	-36.5	2.41e-06	0	0.871	0.871	WLS fiber cladding1PV Transportat
2	0.191	-0.451	-36.6	2.41e-06 2.41e-06 2.41e-06	õ		0.893	WLS_fiber_cladding1PV Transportat WLS_fiber_cladding2PV Transportat World Transportation
3	0.195	-0.46	-36.6	2.41e-06	Ő	0.028	0.921	World Transportation
4	0.195	-0.46	-36.6	2.41e-06	0	0	0.921	WLS_fiber_cladding2PV Transportat
5	0.191	-0.451		2.41e-06	0		0.949	WLS_fiber_cladding1PV Transportat
6	0.187	-0.442	-36.6	2.41e-06	0		0.971	WLS_fiber_corePV Transportation
7	-0.187	0.442	-38.1	2.41e-06	0		2.71	WLS fiber cladding1PV Transportat
8	-0.191	0.451	-38.1	2.41e-06	0		2.73	WLS_fiber_cladding2PV Transportat World Transportation WLS_fiber_cladding2PV Transportat
9	-0.195	0.46	-38.1	2.41e-06	0		2.76	World Transportation
10	-0.195	0.46	-38.1	2.41e-06	0		2.76	WLS_fiber_cladding2PV Transportat
11	-0.191	0.451		2.41e-06	0		2.79	WLS_fiber_claddingIPV Transportat
12	-0.187	0.442		2.41e-06	0			WLS_fiber_corePV Transportation
13	0.187	-0.442		2.41e-06	0		4.55	WLS_fiber_cladding1PV Transportat
14	0.191 0.195	-0.451	-39.7	2.41e-06	0		4.58	WLS_fiber_cladding2PV Transportat World Transportation
16	0.195	-0.46	- 39.7	2.41e-06 2.41e-06 2.41e-06	0	0.028	4.0	World Transportation
17	0.191	-0.451	- 39.7	2.410-06	0		4.63	WLS_fiber_cladding2PV Transportat WLS_fiber_cladding1PV Transportat
18	0.187	-0.442	- 39 7	2.41e-06	0		4.65	WLS_fiber_corePV Transportation
19	-0.187	0.442		2.41e-06	0			WLS_fiber_cladding1PV Transportat
20	-0.191	0.451		2.41e-06	õ	0.022	6 42	WIS fiber cladding20V Transportat
21	-0.195	0.46	- 41 2	2 410-06	0	0.028	6 44	World Transportation
22	-0.195	0.46	-41.2	2.41e-06	0	0	6.44	WLS fiber cladding2PV Transportat
23	-0.191	0.451	-41.2	2.41e-06	0	0.028	6.47	WLS_fiber_cladding1PV Transportat
24	-0.187	0.442	-41.3	2.41e-06 2.41e-06 2.41e-06	0	0.022	6.49	WLS_fiber_cladding2PV Transportat WLS_fiber_cladding1PV Transportat WLS_fiber_cladding1PV Transportation
25	0.187	-0.442	-42.7	2.41e-06	0		8.24	WLS_TIDEr_claddingIPV Transportat
26	0.191			2.41e-06	0			WLS_fiber_cladding2PV Transportat
27	0.195			2.41e-06	0	0.028	8.29	
28	0.195			2.41e-06	0	0	8.29	WLS_fiber_cladding2PV Transportat
29	0.191	-0.451	-42.8	2.41e-06	0	0.028	8.31	WLS_fiber_cladding1PV Transportat WLS_fiber_corePV Transportation WLS_fiber_cladding1PV Transportat
30	0.187	0.442	-42.8	2.41e-06 2.41e-06	0		8.34	WLS_fiber_corePV Transportation
32	-0.191	0.442	-44.3	2.41e-06	0		10.1	WLS_fiber_cladding2PV Transportat
33	-0.195	0.46	- 44.3	2.41e-06	0		10.1	World Transportation
34	-0.195	0.46		2.410-06	0	0.028	10.1	WLS_fiber_cladding2PV Transportat
35	-0.191	0.451		2.41e-06	Ø	0.028	10.2	WLS_fiber_cladding1PV Transportat
36	-0.187	0.442		2.41e-06	õ	0.022	10.2	WLS fiber corePV Transportation
37	0.187	-0.442	-45.8	2.41e-06	0	1.74	11.9	WLS_fiber_corePV Transportation WLS_fiber_cladding1PV Transportat WLS_fiber_corePV Transportation
38	0.187	-0.442	-45.8	2.41e-06	0	Θ	11.9	WLS_fiber_corePV Transportation
39	-0.187	0.442	-47.3	2.41e-06	0		13./	WL5_Tiber_claddingiPV Transportat
40	-0.191	0.451	-47.3	2.41e-06	Θ		13.7	WLS_fiber_cladding2PV Transportat
41	-0.195	0.46		2.41e-06	θ	0.028	13.7	World Transportation
42	-0.195	0.46		2.41e-06	0	Θ	13.7	WL5_fiber_cladding2PV Transportat
43	-0.191	0.451	-47.3	2.41e-06	0	0.028	13.7	WLS_fiber_cladding1PV Transportat WLS_fiber_corePV Transportation WLS_fiber_cladding1PV Transportat
44	-0.187	0.442	-47.4	2.41e-06 2.41e-06 2.41e-06	0		13.8	WL5_fiber_corePV Transportation
45	0.187	-0.442	-48.8	2.41e-06	0		15.5	WLS_fiber_cladding1PV Transportat
46	0.191	-0.451	-48.8	2.410-06	0		15.5	WL5_Tiber_cladding2PV Transportat
47	0.195	-0.46		2.410-06	0		15.6	
48	0.195	-0.46		2.41e-06 2.41e-06	0		15.6	WLS_fiber_cladding2PV Transportat
49	0.191	-0.451		2.41e-06 2.41e-06	0	0.028	15.6	WLS_fiber_cladding1PV Transportat
51	-0.0975	0.23	-40.9	2.41e-06 2.41e-06	0		16.0	WLS_fiber_corePV Transportation MPPC2PV Transportation World Transportation
	0.0313	0.23	-30	2.410-00	0	0.0604	10.9	Threer Transportation

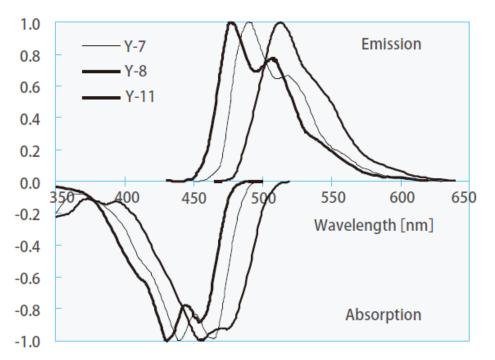

Results of Simulation

<pre>* G4Track Information: Particle = opticalphoton, Track ID = 26, Parent ID = 0</pre>								
	×1	Y(mm)	- ()	wine (mark)	de las sul			N
Step#	X(mm)							NextVolume ProcName
0	0	0		2.88e-06				WLS_fiber_corePV initStep
1	0	0		2.88e-06				WLS_fiber_corePV OpWLS
-								1), #SpawnTotal= 1
	0		0 - 43	.3 2.39e-	06	opticalpho		n lata la internet
:-								EndOf2ndaries Info
*****	********	********	********	*********	*******	********	********	********************************
* G4Tr	ack Infor	mation:	Particle	= optical	photon.	Track II	= 180.	Parent ID = 26
*****	********	********	********	*********	*******	********	********	*******************************
Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng		NextVolume ProcName
Θ	0	0	-43.3	2.39e-06	0	0	Ø	WLS_fiber_corePV initStep
1	-0.449	0.17	-43.9	2.39e-06	0	0.799	0.799	WLS fiber cladding1PV Transportation
2	-0.458	0.174	- 44	2.39e-06	0	0.0192	0.818	WLS fiber cladding2PV Transportation
3	-0.468	0.177	- 44	2.39e-06	0	0.0224	0.841	World Transportation
4	-0.468	0.177	- 44	2.39e-06	G	Θ	0.841	WLS fiber cladding2PV Transportation
5	-0.458	0.174	- 44	2.39e-06	0	0.0224	0.863	WLS_fiber_cladding1PV Transportation
6	-0.449	0.17	-44	2.39e-06	0	0.0192	0.882	WLS fiber_corePV Transportation
7	0.449	-0.17	-45.3	2.39e-06	0	1.6	2.48	WLS_fiber_cladding1PV Transportation
8	0.458	-0.174	-45.3	2.39e-06	0	0.0192	2.5	WLS_fiber_cladding2PV Transportation
.9	0.468	-0.177	-45.3	2.39e-06	0	0.0224	2.52	World Transportation
10	0.468	-0.177	-45.3	2.39e-06	0	0	2.52	WLS_fiber_cladding2PV Transportation
11	0.458	-0.174	-45.4	2.39e-06	0	0.0224		WLS_fiber_cladding1PV Transportation
12	0.449	-0.17	-45.4	2.39e-06	.0	0.0192		WLS_fiber_corePV Transportation
13	-0.449	0.17	-46.7	2.39e-06	0	1.6		WLS_fiber_cladding1PV Transportation
14	-0.458	0.174	-46.7	2.39e-06	0	0.0192		WLS_fiber_cladding2PV Transportation
15	-0.468	0.177		2.39e-06	O	0.0224	4.2	
16	-0.468	0.177		2.39e-06	0	0	4.2	WLS_fiber_cladding2PV Transportation
17	-0.458	0.174		2.39e-06	0	0.0224		WLS_fiber_cladding1PV Transportation
18	-0.449	0.17		2.39e-06	0	0.0192		WLS_fiber_corePV Transportation
19	0.449	-0.17		2.39e-06	0	1.6		WLS_fiber_cladding1PV Transportation
20	0.458	-0.174		2.39e-06	0	0.0192		WLS_fiber_cladding2PV Transportation
21	0.468	-0.177		2.39e-06	0	0.0224	5.89	
22	0.468	-0.177		2.39e-06	0	Θ	5.89	WLS_fiber_cladding2PV Transportation
23	0.458	-0.174		2.39e-06	0	0.0224	5.91	WLS_fiber_cladding1PV Transportation
24	0.449	-0.17		2.39e-06	0	0.0192		WLS_fiber_corePV Transportation
25	-0.449	0.17		2.39e-06	0	1.6		WLS_fiber_cladding1PV Transportation
26	-0.449	0.17		2.39e-06	0	0		WLS_fiber_corePV Transportation
27		-0.00247		2.39e-06	0	0.811	8.34	
28	0.0427	-0.0162	- 50	2.39e-06	0	0.0632	8.4	World Transportation

*****	*******	********	********		*********	Track T	- 20	**************************************
*****	********	acion:	*******	e = opticat	*******	FRACK IL) = 28, P	
Step# 0				KinE(MeV) 2.88e-06				NextVolume ProcName WLS_fiber_corePV initStep
1	List	0 of 2ndar	ies - #Sp	2.88e-06 pawnInStep=	0 = 1(Rest=	6.13 0,Along =	6.13 = 0,Post= 1	WLS_fiber_corePV 0pWLS 1), #SpawnTotal= 1
:	0		0 -43	3.8 2.61e-	06 0	opticalpho		EndOf2ndaries Info
*****	*********	*******	*******	*********	*******	********	*********	*******************************
* G4T	rack Inform	mation:	Particle	e = optical	photon,	Track II) = 178,	Parent ID = 28
Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLena	TrackLeng	NextVolume ProcName
Θ	Θ	0	-43.8	2.61e-06	0			WLS_fiber_corePV initStep
1	-0.422	-0.229	-43.8	2.61e-06	Θ	0.481		WLS_fiber_cladding1PV Transportation
2		-0.234		2.61e-06	0	0.01	0.491	WLS_fiber_cladding2PV Transportation
3		-0.238	-43.8	2.61e-06 2.61e-06	0	0.01	0.501	World Transportation
4	-0.55	-0.298	-43.8	2.61e-06	0	0.126	0.627	OutOfWorld Transportation
*****	********	*******	*******	*********	********	********	*********	******************************
* G4T	rack Infor	mation:	Particle	e = optical	photon.	Track II) = 27.	Parent ID = 0
*****	*********	*******	******	*****	******	********		
Step#	X (mm)	Y(mm)			dE(MeV)	StepLeng	TrackLeng	NextVolume ProcName
Θ	Θ	Θ		2.88e-06				WLS_fiber_corePV initStep
1		Θ		2.88e-06				WLS_fiber_corePV OpWLS
	List 0			bawnInStep= 3.3 2.56e-				1), #SpawnTotal= 1
				3.3 2.30e-				End0f2ndaries Info
*****	*********	********		**********	********			
* G4T	rack Inform	mation:	Particle	e = optical	photon,	Track II) = 179,	Parent ID = 27
Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume ProcName
. 0	0	Θ	-43.3	2.56e-06	Θ	ő	õ	WLS_fiber_corePV initStep
1	0.163	0.451	-43.5	2.56e-06	Θ	0.541	0.541	WLS_fiber_cladding1PV Transportation
2	0.167	0.461	-43.5	2.56e-06	Θ	0.0115	0.553	WLS_fiber_cladding2PV Transportation
3	0.17	0.47	-43.5	2.56e-06	Θ			
4	0.199	0.55	-43.6	2.56e-06	0	0.125	0.689	OutOfWorld Transportation

- Reflected among core, 1st and 2nd cladding
- Going out of World


Result of Simulation


- However, trapping efficiency obtained by simulation, is far larger than we expected.
- Also, the shape of graph differ from we expected.
- There be more problem.

Absorption Length

Experiments for absorption length

Y-7, Y-8, Y-11

Absorbance

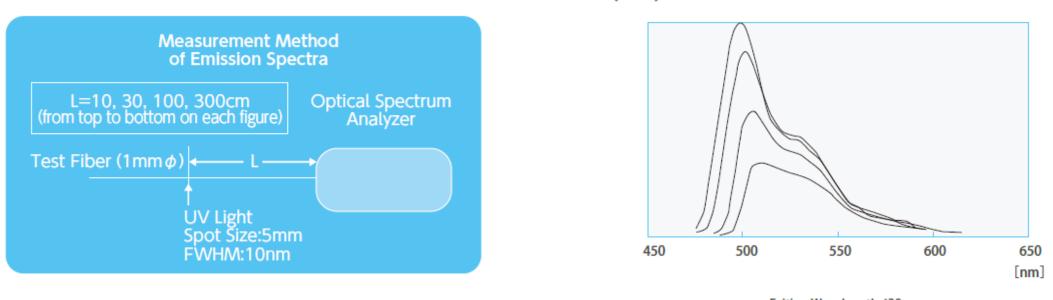
• Mathematically, probability of finding a particle at depth x into the material in calculated by Beer-Lambert Law

 $P(x) = e^{-x/\lambda}$

- And λ is attenuation(absorption) length, and it depend on material and energy.
- Definition of absorbance is as follow.

ABS =
$$k(\lambda)Cd = log_{10}\{\frac{I_0(\lambda)}{I(\lambda)}\}$$
 when d = 10 mm

• For reference, C is equal to 18.2 ppm and k_p (k at peak of abosorption) is equal to 0.00638 in Y-11 of Kurarary


Changing parameter used in Geant4

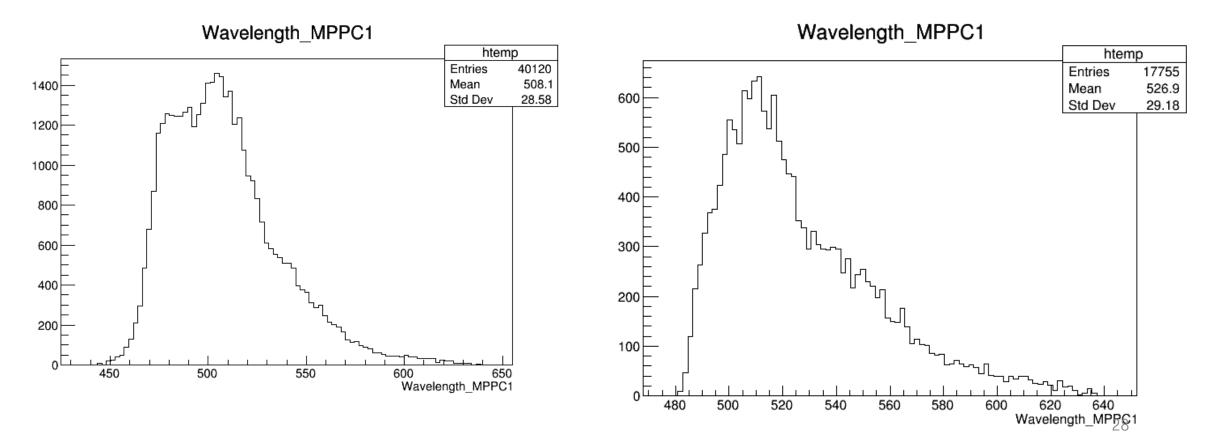
• If assume that y-axis of absorption spectrum is k, absorption(attenuation) length of Y-11 is as follow.

$$\lambda = \frac{1}{kC * ln10}$$

• C is concentration of dyne used in Y-11 and k is constant which is function of wavelength.

Comparison of simulation

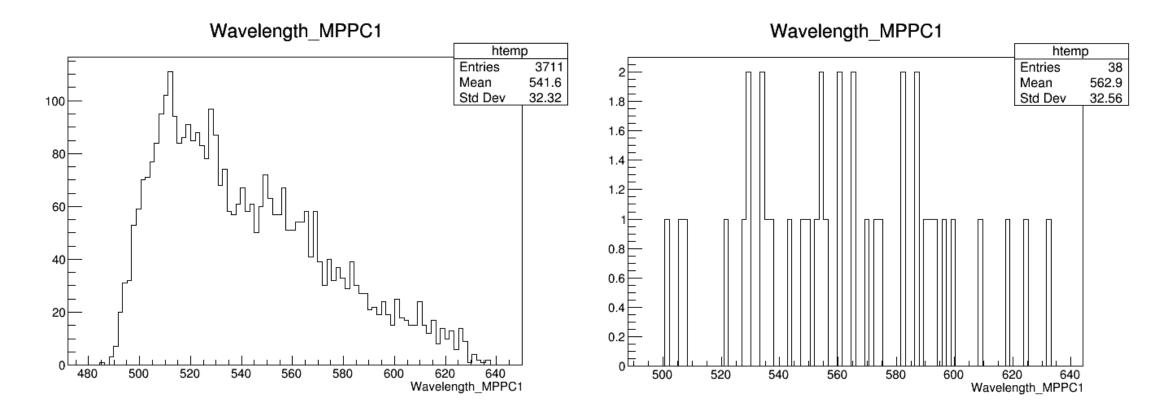
Y-11(200)


Exiting Wavelength:430nm

When photon of a wavelength of 430nm shoot in the end of fiber, the emission spectrum should be same as the right.

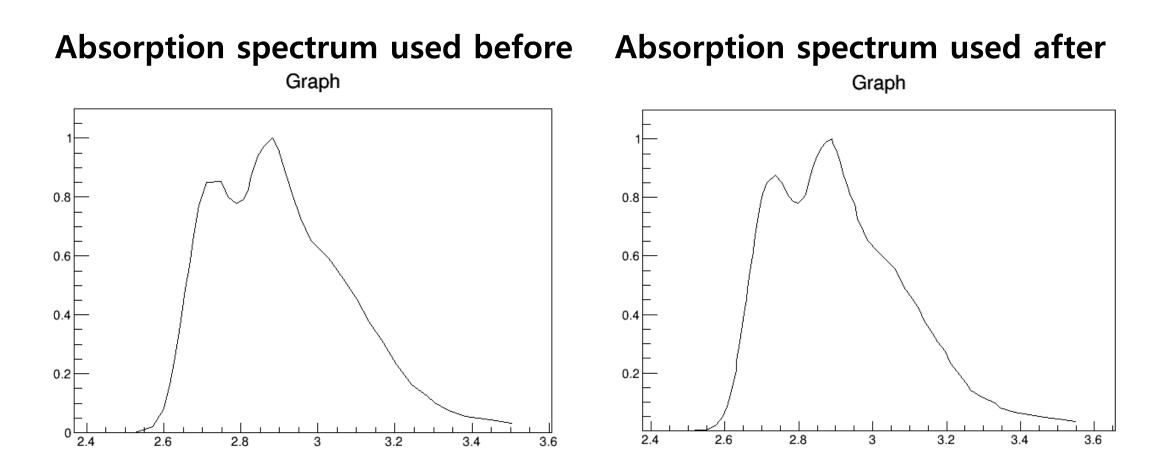
Comparison with reference

For 10 cm


For 30 cm

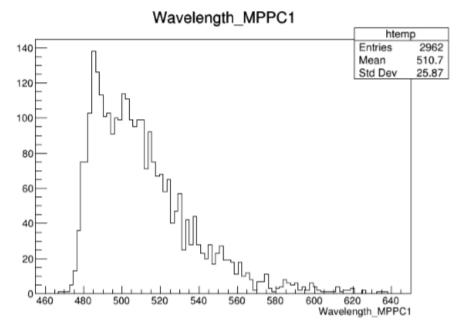
Comparison with reference

For 100 cm

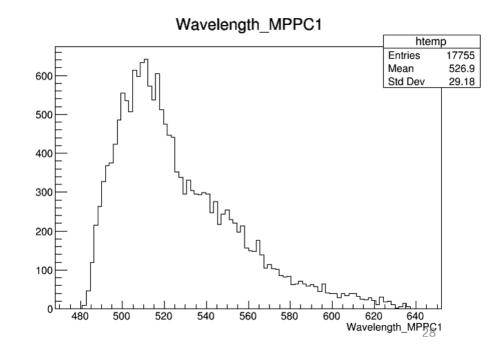

For 300 cm

Problem

- However, the shape of graph is not exactly same with reference.
- Also, there is problem of trapping efficiency, that is, the value of probability is much higher than we expected, about 5 times.(in 10cm)
- According to mail from Kuraray, trapping efficiency is calculated only in axis. For this reason, we need to calculate trapping efficiency more detail.



Backup


Before

For 30 cm

After

For 30 cm

