Physics at e+e- colliders

TYL/FJPPL, FKPPL Annual Meeting 2019

Roman Pöschl

Based on material of a number of distinguished colleagues Partially you'll get a sneak preview on what will be shown at Grenada next week

Jeju Island/South Korea – May 2019

- Introduction
- •Higgs physics at e+e- colliders
- 2 fermion processes
- Summary and conclusion

The Standard Model is complete

- We know that there exists at least one fundamental scalar with a non-vanishing expectation value
- We don't know what shapes the potential and whether the potential is the footprint of a larger mass scale

Open questions

TRA DIMENSIONS? DARK MATTER? H1665 DARK ENERGY SUPERSYMMETRY? UNIFICATION ? OURNTUM UNIVERSE?

TYL/FJPPL, FKPPL Annual Meeting

1) Collisions at energies well above the electroweak scale

- Requires now and in the foreseeable future Hadron colliders
- Direct production of new particles
- Produce large number of rare particles and study rare decays
- First precision measurements of key particles of electroweak theory
- -> High energy, High luminosity LHC

2) e+e-Collisions at energies at the electroweak scale

- Probe the electroweak scale with high precision
- ... in particular particles that carry the "imprint of the Higgs Field such as W, Z and top"

-> LC

- 3) e+e- collisions at 'smaller' energies
- Requires high luminosity to get sensitive to tiny quantum effects -> SuperKEKB

e+e- Physics program

- All Standard Model particles within reach of planned e+e- colliders
- High precision tests of Standard Model over wide range to detect onset of New Physics
- Machine settings can be "tailored" for specific processes
 - Centre-of-Mass energy
 - Beam polarisation (straightforward at linear colliders)

$$\sigma_{P,P'} = \frac{1}{4} \left[(1 - PP')(\sigma_{LR} + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR}) \right]$$

• **Background free** searches for BSM through beam polarisation

	\sqrt{s}	beam polarisation	∫Ldt for Higgs	R&D phase	
ILC	0.1 - 1 TeV	e-: 80% e+: 30%	2000 fb-1 @ 250 GeV 200 fb-1 @ 350 GeV 4000 fb-1 @ 500 GeV	TDR completed in 2013	Details see talk by Y. Okada
CLIC	0.35 - 3 TeV	e-: (80%) e+: 0%	1000 fb-1 @ 380 GeV 2500 fb-1 @ 1.5 TeV 5000 fb-1 @ 3 TeV	CDR completed in 2012	
CEPC	90 - 240 GeV	e-: 0% e+: 0%	5600 fb-1 @ 240 GeV	CDR completed in 2018	Details see talk by M. Ruan
FCC-ee	90 - 350 GeV	e-: 0% e+: 0%	5000 fb-1 @ 250 GeV 1700 fb-1 @ 350 GeV	CDR completed in Jan 2019	

Table courtesy of J. Brau

Roman Pöschl

- High energies ~above tt-threshold Domain of linear colliders
- Low energies e.g. Z-pole Domain of circular machines However, see later ...
- Transition region, i.e. HZ threshold ... not so clear Comparable numbers for all proposals
- Linear colliders are more versatile to test chiral theory due to polarised beams
- Detailed design parameters see backup

Figure J. List

Higgs production at e+e- colliders

two important thresholds: \sqrt{s} ~ 250 GeV for ZH, ~500 GeV for ZHH and ttH

Higgs Recoil Mass:

$$M_{h}^{2} = M_{recoil}^{2} = s + M_{Z}^{2} - 2E_{Z}\sqrt{s}$$

- from e+e- colliders

Clean and sharp peak in Z recoil spectrum

• Illustrates precision that can be expected

Fitting Higgs Couplings – Kappa and EFT

Couplings to Higgs Boson in Standard Model

Analysis using Kappa-fit:

- Simple scaling of SM-couplings
- Implies that Higgs coupling to Z in production and decay are identical
- No new operators

Analysis using EFT-fit:

- Introducing set of SU(2)xU(1) compatible operators
- e.g. breaks simple relation between Higgs production and decay
- Total width and Higgs to invisible as free parameters
- Receives additional input from e.g. ee->WW and EWPO

$$\frac{\Gamma(h\to ZZ^*)}{SM} = \kappa_Z^2 \ ,$$

$$\Gamma(h \to ZZ^*)/SN$$

 $\sigma(e^+e^- \to Zh)/SN$

 $\frac{\sigma(e^+e^- \rightarrow Zh)}{SM}$ $=\kappa_z^2$

Precision on Higgs Physics – Kappa framework

Assumption: HL-LHC basically completed before e+e- machine starts

- ILC250 already powerful program (needs however e.g. top-Yukawa as input)
- Higher energies beneficial for total width and top-Yukawa couplings (fit constraints and H->γγ)

Courtesy of

For ESU

Precision on Higgs Couplings – EFT Framework

- Analysis in EFT Framework
- No clear winner among lepton colliders
- Polarisation at Linear Colliders compensate for higher integrated luminosity at Circular Marchines

aTGCs (=> Constraints in EFT Framework)

Anomalous Triple Gauge Couplings

Limits on Triple Gauge Couplings@250 GeV

TYL/FJPPL, FKPPL Meeting 2019

• Sensitivity to triple and quartic gauge Boson couplings

EFT Framework and beam polarisation

production cross section (see backup)

EFT adds additional spin strucuture to ZH

• Precision for 2ab-1 polarised = 5ab-1 unpolarised

Top Yukawa Coupling

- Coupling of Higgs to heaviest particle known today
- Up to eight final state jets

	iii		CLC		
√s[GeV]	550	1000	1400		
L[ab-1]	4	8	2		
δyt/yt[%]	2.8	2.0	2.7		

The Higgs Potential

Perfect (electroweak) symmetry and massless particles

Broken (electroweak) symmetry and massive particles

Two questions:

• Shape of "today's" Higgs Potential?

$$V(\eta) = \frac{1}{2}m^2\eta^2 + \lambda \eta^3 + \frac{1}{4}\lambda \eta^4 =>$$
 Triple Higgs-self coupling

• Transition from symmetric, unbroken to broken phase?

- Coexistence Two minima at 0 and v at T

=> 1st order phase transition and development into "today's" shape at T=0

The discovered Higgs is too heavy to provoke a 1st order phase transition

=> New physics needed

- No coexistence of two minima at 0 and v

=> Cross over into "today's" shape at T=0

- New (bosonic) particle may modify λ and enable 1st order phase transition

- Impact on measurements and achievable precisions of λ ?

Deviations of λ from **SM** Value

Manifestation of new physics in observables and extracted results?

- Remarkable sensitivity of 500 GeV machine in case of large upward deviation
- 1 TeV machine superior for large upward and downward deviations

Light scalar may be missing piece to trigger first order 1st phase transition and/or being the radion in extra dimension theories

- - Statistics helps at lowest masses
- better than ILC
 - Backgrounds taken correctly into account?
 - Similar at stable particle level

• e+e- colliders extend limits considerably w.r.t. LHC

• CEPC, FCCee (>Z pole) limits order of magnitude

Two fermion processes

- Important threshold tt => top mass
- Sensivity to new physics at all cms energies

- Precise Top (and W) mass crucial to test compatibility of measured Higgs mass
- SM might not be sufficient to explain Higgs mass
- LHC may not reach sufficient discriminative power
- A lepton collider will for sure

Top pair production at threshold

- Decay of top quark smears out resonances in a well defined way

Top threshold scans at different e+e- colliders

Two fermion production and asymmetries

- SU(2), xU(1), symmetry of Standard Model introduces forward backward asymmetry and Left-Right asymmetry, i.e. $A_{iI} \neq A_{iR} = >$ Observables highly dependent on beam polarisation
- New physics implying **new vector bosons** will modify coefficients and asymmetries
- Discovery potential in e+e- is supported best by polarised beams

Study by Kyushu group and KEK group within TYL/FJPPL HEP01 Project

- SSM is "carbon" copy of SM Z and used as common metric in generic Z' searches
- ALR introduces an "ad hoc" $SU(2)_{R}$ and a Z' with orthogonal couplngs to the fermions
- X, ψ , η are linear combinations of bosons appearing in Grand Unified Theories with couplings orthogonal to the SM Z

Typical mass reach 5-10 TeV

- Reach shown for e, μ, τ
- Adding quarks would improve limits

- SM does not provides no explanation for mass spectrum of fermions (and gauge bosons)

- Fermion mass generation closely related to the origin electroweak symmetry breaking

- Expect residual effects for particles with masses closest to symmetry breaking scale

Strong motivation to study chiral structure of heavy quark vertices in high energy e+e- collisions

Accuracy on CP conserving couplings

 e+e- collider might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14$ TeV)

- Large disentangling of couplings for ILC thanks to polarised beams
- Final state analysis at FCCee • Also possible at LC => Redundancy
- Note
 - Maximal Lumi scenario for FCCee
 - Minimal Lumi scenario for ILC (~factor 4 possible with increased lumi and improved selection)

corrected for ILC values published in 1505.06020

LC promises to be high precision machine for electroweak top couplings EFT Analysis for CLIC predicts mass reaches well above 10 TeV

New physics reach for typical BSM scenarios with composite Higgs/Top and/or extra dimensions Based on phenomenology described in Pomerol et al. arXiv:0806.3247

95% Exclusion Limit

ILC@500 has discovery potential up to 10 TeV for typical BSM scenario More cms e.g. at CLIC would of course help a great deal (also for disentangling effects)

5σ discovery

New physics below tt threshold? - Example b quark couplings

- High precision e+e- collider will give final word on anomaly
- In case it will persist polarised beams will allow for discrimination between effects on left and right handed couplings
- Randall Sundrum Models generate basically automatically a symmetry group of type SU(2)

Randall Sundrum Models Djouadi/Richard '06

Decomposing ee->bb – Differential cross section

Study by S. Bilokin (TYL/FJPPL Laureate) and A. Irles (LAL) within TYL/FJPPL HEP01 Project

- Full simulation study (with ILD concept), Benchmark reaction for 250 GeV running
 - Experimental challenge: Measurement of b-quark charge on event-by-event basis
- Long lever arm in $\cos \theta_{h}$ to extract from factors or couplings $\frac{d\sigma^{I}}{d\cos\theta} = S^{I}(1+\cos^{2}\theta) + A^{I}\cos\theta \qquad I = L, R \quad \frac{\text{Form factors/couplings}}{\text{from S and A}}$

Precision on couplings and helicity amplitudes in ee->bb

Figure: A. Irles

- Couplings are order of magnitude better than at LEP
- In particular right handed couplings are much better constrained => Sensitivity to 'right handed' Z' (see above)
- Presentation of helicity amplitudes preferrable since new physics can also infliuence the Zee vertex
 - in 'non top-philic' models
- Full disentangling of helicity structiure for all fermions only possible with polarised beams!!

New resonances

- ILC/GigaZ with ~10⁹ Z
- Sensitivity to Z/Z' mixing
- Sensitivity to vector (and tensor) couplings of the Z
 - the photon does not "disturb"

- Sensitivity to interference effects of Z and photon!!
- Measured couplings of photon and Z can be influenced by new physics effects
- Interpretation of result is greatly supported by precise input from Z pole

• Option for Z-Pole extension exists for ILC (may need to be further scrutinized)

• It is useful to remind on the potential of a linear collider running on the pole

Precision on Z-pole and interplay with measurements above pole

Example: b couplings and helicity amplitudes

- Spectacular sensitivity to new physics in RS Models
 - Complete tests only possible at LC
 - Discovery reach O(10 TeV)@250 GeV and O(20 TeV)@500 GeV
- Pole measurements critical input
 - Only poorly constrained by LEP
- Pole measurements will (most likely) influence also top electroweak precision program
 - (t,b) doublet

- Precise measurement of $\sin^2 \theta_{\rm eff.}^{\ell}$
 - Ten times better than LEP/SLD

 - No assumption on lepton universality at LC
- Complete test of lepton universality
 - Precisions of order 0.05%
- and beam energy (~MeV or better) required

• Polarisation compensates for ~30 times luminosity • ... and ALR at LC can benefit from hadronic Z decays

• Excellent control of beam polarisation($dP/P \sim 5 \times 10^{-4}$) 36

- As of today e+e- colliders are the most promising tools to detect the onset of new physics
 - Precision on Higgs couplings at or below 1% level
 - Indrect and direct discovery potential at all centre-of-mass energies
 - Light scalars or vector bosons with different gauge symmetry
- e+e- colliders ranked high in international strategies for particle physics (by scientists)
 - Clear priority in inputs to European Strategy:
 - long term contributions to ILC
 - CLIC project @CERN
 - FCC-ee CDR
 - Asia:
 - ILC discussed at gouvernmental level in Japan for implementation
 - CEPC CDR
 - US: ILC is integral part of P5 strategy
- Full exploitation of physics potential requires large energy coverage and polarised beams
 - Effects at HZ threshold and below are expected to become more prominent at higher energies
 - New physics signals and relevant operators depend on chiral state of initial and final state fermions
 - Both premises are fulfiled only by linear e+e- colliders (=> preferred choice ?)
- ILC is shovel ready. Why don't we build it?
- A clear pattern of anomalies would be an excellent (and maybe the only) motivation for a large hadron machine

Backup

Circular Electron-Positron Colliders

- ~100 km storage rings
- Coupled to hadron collider proposal
- 90 350 GeV cms energy
- No long. beam polarisation
- CDR completed January 2019 http://fcc-cdr.web.cern.ch

- ~100 km storage rings
- Coupled to hadron collider proposal
- 90 240 GeV cms energy
- No long. beam polarisation
- CDR completed September 2018
- Arxiv:1809.00285

Linear Electron-Positron Colliders

TYL/FJPPL, FKPPL Meeting 2019

Energy: 0.1 - 1 TeV Electron (and positron) polarisation TDR in 2013 + DBD for detectors Footprint 31 km

Initial Energy 250 GeV – Footprint ~20km

Energy: 0.4 - 3 TeV

CDR in 2012

- Footprint 48km
- Initial Energy 380 GeV

New physics?

EFT: Two distinct observations

Observables at fixed mass m (e.g. Z pole of Higgs decays)

$$\frac{\sigma}{\sigma_{SM}} \approx |1 + \frac{c_6 m^2}{\Lambda^2}|^2$$

Increasing UV scales probed in EFT achieved solely by increasing the measurement precision $c_{e} \sim (g^{*})^{2}$ Typical experimental precision 0.1-1%

High energy tails of distributions (e.g. Drell-Yan Productions

 $\frac{\sigma}{\sigma_{SM}} \approx |1 + \frac{c_6 E^2}{\Lambda^2}|^2$

Increasing UV scales probed in EFT achieved solely by increasing the energy scale of measurement precision

Typical experimental precision 10%

New physics?

Polarized beams play a crucial role in disentangling the two spin structures

$$\sigma = \frac{2}{3} \frac{\pi \alpha_w^2}{c_w^4} \frac{m_Z^2}{(s - m_Z^2)} \frac{2k_Z}{\sqrt{s}} \left(2 + \frac{E_Z^2}{m_Z^2}\right) \cdot Q_Z^2 \cdot \left[1 + 2a + 2\frac{3}{(2a)}\right]$$

The a and b coefficients depend on beam polarization:

$$e_{L}^{-}e_{R}^{+} \qquad Q_{ZL} = \left(\frac{1}{2} - s_{w}^{2}\right), \qquad a_{L} = -c_{H}$$

$$b_{L} = c_{w}^{2}\left(1 + \frac{s_{w}^{2}}{1/2 - s_{w}^{2}}\frac{s - m_{Z}^{2}}{s}\right)(s)$$

$$e_{R}^{-}e_{L}^{+} \qquad Q_{ZR} = \left(-s_{w}^{2}\right), \qquad a_{R} = -c_{H}$$

$$b_{R} = c_{w}^{2}\left(1 - \frac{s - m_{Z}^{2}}{s}\right)(sc_{WW})$$

• Angular distributions in $e^+e^- \rightarrow hZ$ can also be used, but have weaker analyzing power and require more luminosity to achieve the same result

 $\left[\frac{3\sqrt{s}E_Z/m_Z^2}{2+E_Z^2/m_Z^2}\right] b$

 $8c_{WW}$

Higgs couplings – Impact of TGC

Higgs couplings – Polarisation + EWPO

Higgs couplings – Polarisation + EWPO

Science drivers

Higgs Boson

Elementary Scalar?

Composite object?

- Higgs and top quark are intimately coupled!
 Top Yukawa coupling O(1) !
 Top mass important SM Parameter
- New physics by compositeness? Higgs <u>and</u> top composite objects?

Courtesy of S. Rychkov

- e+e- collider perfectly suited to decipher both particles

Top-Higgs couplings in "presence" of heavy particles

- Heavy particles, e.g. (Kaluza Klein) "duplicas" of SM particles provoke sizable effects
- Sensitivity to CP Violation !?

Higgs Self-couplings – An overview

Light scalar may be missing piece to trigger first order 1st transition and/or the being the radion in extra dimension theories

- New resonances cleanly dinstiguishable for large range of masses
- Sensitivity to mixing angle θ h down to 10^{-2} (taking all relevant backgrounds into account)
- ^Lnew scalar would count as "Feebly interacting Particle" (FIPS)

ILC 500 GeV, 4 ab-1 & 1 TeV, 8 ab-1 $\delta \lambda = 10\%$

CLIC 1.4 TeV, 1.5 ab-1 & 3 TeV, 2 ab-1 $\delta \lambda = 10\%$

Electroweak top couplings

Top is primary candidate to be a messenger new physics in many BSM models

Precision expected for top quark couplings will allow to distinguish between models Remark: All presented models are compatible with LEP elw. precision data

Statistical error: $\sqrt{s} \sim 500 \text{ GeV}$ L = 500 fb⁻¹

htautau

to ±0.005

ILC is the only machine that can be built now
European XFEL gives credbility for construction

High-priority large-scale scientific activities

After careful analysis of many possible large-scale scientific activities requiring significant resources, sizeable collaborations and sustained commitment, the following four activities have been identified as carrying the highest priority.

Points 1,2,4:

- Exploit LHC and implement HiLumi. Well underway.
- High field magnets and high gradient acceleration, project planning for CLIC and FCC/He-LHC. Studies being summarized for the European Strategy update in 2019-20.
- Develop a neutrino programme at CERN. Neutrino platform implementation.

Point 3:

• There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded. The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate. *Europe looks forward to a proposal from Japan to discuss* a possible participation.

Why European Particle Physics Strategy?

- Relation between ESFRI and CERN had to be clarified within the Europe Commission
 - ESFRI, the European Strategy Forum on Research Infrastructures strategic instrument to develop the scientific integration of Europe to strengthen its international outreach.
 - CERN's convention mandates coordination of infrastructure of par physics for Member States
- First ESFRI roadmap published in 2006, with 35 projects, the Roadmap updated in 2008 bringing the number of RIs of pan-European relevance 44. Later updates 2008, 2010, 2016, 2018
- First European Particle Physics Strategy (EPPS) called by CEPN Council • 2005 and endorsed in 2006, latest update in 2013... next in 2020.

Current period

>	
ean	
s, is a e and	
rticle	
was to	
in	

EPPSU – The Schedule

EPPSU Secretary: H. Abramowicz

ILC Parameters

			TDR		New
Center-of-mass energy	ECM	GeV	250	500	250
Bunch population	N	e10	2	2	2
Bunch separation		ns	554	554	554
Beam current		mA	5.78	5.78	5.78
Number of bunches per pulse	Nb		1312	1312	1312
Collision frequency		Hz	5	5	5
Electron linac rep rate		Hz	10	5	5
Beam power (2 beams)	PB	MW	5.26	10.5	5.26
r.m.s. bunch length at IP	σ	mm	0.3	0.3	0.3
relative energy spread at IP (e-)	σ_{E}/E	%	0.188	0.124	0.188
relative energy spread at IP (e+)	σ_{E}/E	%	0.15	0.07	0.15
Normalized horizontal emittance at					
IP	Enx	μm	10	10	5
Normalized vertical emittance at IP	Eny	nm	35	35	35
Beam polarization (e-)		%	80	80	80
Beam polarization (e+)		%	30	30	30
Beta function at IP (x)	β _x	mm	13	11	13
Beta function at IP (y)	β	mm	0.41	0.48	0.41
r.m.s. beam size at IP (x)	σ	nm	729	474	516
r.m.s. beam size at IP (y)	σ,	nm	7.66	5.86	7.66
r.m.s. beam angle spread at IP (x)	θx	μr	56.1	43.1	39.7
r.m.s. beam angle spread at IP (y)	θ	μr	18.7	12.2	18.7
Disruption parameter (x)	Dx		0.26	0.26	0.51
Disruption parameter (y)	Dy		24.5	24.6	34.5
Upsilon (average)	Y		0.020	0.062	0.028
Number of beamstrahlung photons	ny		1.21	1.82	1.91
Energy loss by beamstrahlung	δ _{BS}	%	0.97	4.50	2.62
Geometric luminosity	Lgeo	e34/cm ² s	0.374	0.751	0.529
Luminosity	L	e34/cm ² s	0.82	1.79	1.35

FCC-ee Parameters

		Z	W^{\pm}	Zh	t	ī
Circumference	[km]			97.756		
Bending radius	[km]	10.760				
Free length to IP ℓ^*	[m]	2.2				
Solenoid field at IP	[T]			2.0		
Full crossing angle at IP	[mrad]			30		
SR power / beam	[MW]			50		
Beam energy	[GeV]	45.6	80	120	175	182.5
Beam current	[mA]	1390	147	29	6.4	5.4
Bunches / beam		16640	2000	328	59	48
Average bunch spacing	[ns]	19.6	163	994	2763^{1}	3396??
Bunch population	$[10^{11}]$	1.7	1.5	1.8	2.2	2.3
Horizontal emittance ε_x	nm	0.27	0.84	0.63	1.34	1.46
Vertical emittance ε_y	[pm]	1.0	1.7	1.3	2.7	2.9
Arc cell phase advances	deg	60/60	60/60		90/90	
Momentum compaction	$[10^{-6}]$	14.8	14.8		7.3	
Arc sextupole families		208 292				
Horizontal β_{π}^{*}	m	0.15	0.2	0.3	1	.0
Vertical β_{u}^{*}	[mm]	0.8	1.0	1.0	1	.6
Horizontal size at IP σ_{π}^{*}	μm	6.4	13.0	13.7	36.7	38.2
Vertical size at IP σ_{u}^{*}	[nm]	28	41	36	66	68
Energy spread (SR/BS)	[%]	0.038/0.132	0.066/0.131	0.099/0.165	0.144/0.196	0.150/0.192
Bunch length (SR/BS)	mm	3.5/12.1	3.0/6.0	3.15/5.3	2.75/3.82	1.97/2.54
Crab sextupole ratio	[%]	97	87	80	50	50
Energy loss / turn	[GeV]	0.036	0.34	1.72	7.8	9.2
RF frequency	MHz		400		400	/ 800
RF voltage	[GV]	0.1	0.75	2.0	4.0 / 5.4	4.0 / 6.9
Long. damping time	turns	1273	236	70.3	23.1	20.4
RF acceptance	[%]	1.9	2.3	2.3	3.5	3.36
Energy acceptance (DA)	1%	± 1.3	± 1.3	± 1.7	-2.8	+2.4
Synchrotron tune Q_z		-0.0250	-0.0506	-0.0358	-0.0818	-0.0872
Luminosity / IP	$[10^{34}/cm^2s]$	230	28	8.5	1.8	1.55
Horizontal tune Q_x		269.139	269.124	389.129	389	.104
Vertical tune Q_y		269.219	269.199	389.199	389	.175
Beam-beam ξ_x/ξ_y		0.004/0.133	0.010/0.115	0.016/0.118	0.088/0.148	0.099/0.126
Lifetime by rad. Bhabha	min	68	59	38	37	40
Actual lifetime by BS	min	> 200	> 200	18	24	18

Roman Pöschl

E. Levichev, FCC Week 2018

CEPC Parameters

	Higgs	W	Z (3T)	Z (2T)			
Number of IPs	2						
Beam energy (GeV)	120	80	45	5.5			
Circumference (km)	100						
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0)36			
Crossing angle at IP (mrad)	16.5×2						
Piwinski angle	2.58	7.0	23	3.8			
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8	.0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)			
Beam current (mA)	17.4	87.9	46	1.0			
Synchrotron radiation power /beam (MW)	30	30	10	5.5			
Bending radius (km)		10.7					
Momentum compact (10 ⁻⁵)		1.11					
β function at IP β_x^* / β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001			
Emittance $\varepsilon_r / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016			
Beam size at IP $\sigma_r / \sigma_v (\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04			
Beam-beam parameters ξ_v / ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072			
RF voltage V_{RF} (GV)	2.17 0.47 0.10						
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)						
Natural bunch length σ_{z} (mm)	2.72	2.98	2.42				
Bunch length σ_z (mm)	3.26	5.9	8.5				
Betatron tune v_x/v_y	363.10 / 365.22						
Synchrotron tune v_s	0.065	0.0395	0.0	028			
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94				
Natural energy spread (%)	0.1	0.066	0.038				
Energy acceptance requirement (%)	1.35	0.4	0.	23			
Energy acceptance by RF (%)	2.06	1.47	1.7				
Photon number due to beamstrahlung	0.29	0.35	0.55				
Lifetime simulation (min)	100						
Lifetime (hour)	0.67	1.4	4.0	2.1			
F (hour glass)	0.89	0.94	0.	99			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1			

Roman P

