OPERATION PRINCIPLE OF SILICON PHOTOMULTIPLIERS

MULTI-PIXEL PHOTON COUNTER (MPPC)

Jung Keun Ahn (Korea University) (Workshop on Particle Detectors with MPPCs, 16 March 2018)

Principle of Photon Detection

- Photoelectric effect produces electron-hole pairs. Band gap (T = 300 K) = 1.12 eV (1100 nm).
- The electron-hole pair can be lost via absorption and recombination.

Operation Range

• The primary electron-hole pair is amplified.

Avalanche Modes

- Only electrons contribute to the avalanche in APD (Proportional) mode.
- Avalanche is self-quenched.

- Electrons and holes contribute to the avalanche in Geiger-APD (SiPM) mode.
- Avalanche is sustained, and external quenching is necessary with a resistor. 2018/03/16 Slide 3

Photodiode in Geiger Mode

- A photodiode operated in Geiger mode is referred to as a SPAD (Single Photon Avalanche Diode).
- The application of a reverse bias beyond its nominal breakdown voltage creates the necessary high-field gradients across the junction.
- Once a current flows, it should then be stopped or 'quenched'.
- \bigcirc Passive quenching is achieved through the use of a series resistor R_Q which limits the current drawn by the diode during breakdown.
- O This lowers the reverse voltage seen by the diode to a value below its breakdown voltage, thus halting the avalanche. The diode then recharges back to the bias voltage, and is available to detect subsequent photons.

Cycle of **breakdown**, avalanche, quench and recharge of the bias to a value above the breakdown voltage

- A single SPAD sensor operated in Geiger-mode functions as a photon-triggered switch, in either an 'on' or 'off' state.
- Regardless of the number of photons absorbed within a diode at the same time, it will produce a signal no different to that of a single photon. Proportional information on the magnitude of an instantaneous photon flux is not available.

Single Photon Avalanche Diode in Geiger Mode

- To overcome this lack of proportionality, the MPPC integrates a dense array of small, independent diodes (microcells), each with its own quenching resistor.
- When a microcell fires in response to an absorbed photon, a Geiger avalanche causes a photocurrent to flow through the microcell.
- This results in a voltage drop across the quench resistor, which in turn reduces the bias across the diode to a value below the breakdown, thus quenching the photocurrent and preventing further Geiger-mode avalanches.
- Once the photocurrent has been quenched, the voltage across the diode recharges to the nominal bias value (the recovery time).

Quenching

MPPC: p on n

 More sensitive in the blue and near UV light because of electrons produced near the *p*⁺⁺ layer triggering the avalanche.

 The PDE is the statistical probability that an incident photon interacts with a microcell to produce an avalanche:

 $PDE(\lambda, V) = \eta(\lambda) \cdot \varepsilon(V) \cdot F,$

where $\eta(\lambda)$ is the quantum efficiency of silicon, $\varepsilon(V)$ is the avalanche probability and *F* is the fill factor.

MPPC Signal

Dark currents

Afterpulses : carriers trapped during the avalanche

○ Cross-talk

Optical Crosstalk

- During avalanche, accelerated carriers in the high-field region will emit photons that can initiate a secondary avalanche in a neighboring microcell.
- These secondary photons tend to be in the near infrared region and can travel long distances.
- A single incident photon may generate signals equivalent to 2 or
 <u>3 photons or even higher.</u>

I-V Curve and Breakdown Voltage

 In Geiger-mode avalanche mode , parameters such as photon detection efficiency (PDE), single photon time resolution, dark count rate, crosstalk or afterpulse are dependent on overvoltage not bias voltage.

O Breakdown voltage strongly temperature dependent (50 mV/K) 고려대학교 KOREA UNIVERSITY 2018/03/16 Slide 12 • The MPPC output current during the rising and quenching transient operations can be written as a function of time:

$$i_{R_L}(t) = I_f \Big(1 - \frac{\tau_q - \tau_i}{\tau_d - \tau_i} e^{-t/\tau_i} + \frac{\tau_q - \tau_d}{\tau_d - \tau_i} e^{-t/\tau_d} \Big),$$

where the circuit time constants τ_i and τ_d account for the rising and quenching processes. $\tau_q = R_q C_q$. The final current value is given by

$$I_f = N_f \frac{V_{over}}{R_q + R_d + N_f R_L}$$

¹D. Marano *et al.*, IEEE Tran. Nucl. Sci. 61, No 1, 23 (2014)

Vmax= 0.673795

Vmax= 3.36897

Vmax= 8.42243

Vmax= 14.0374

- Number of photoelectrons obeys Possion Statistics.
- Crosstalks happends randomly. The spatial distribution can be assumed as a random walk in 4 or 8 directions.
- Random pulse arrival times.
- Electronic noise terms.
- Dark current
- Afterpulses

Occupation Probability

```
Int_t npho = 0;
 for (Int_t ipho=1; ipho<Ncell; ipho++) {</pre>
    if(ipho\10=0) { npho++:
      prob0[0]=0.; prb0[1]=1./Ncell;
      Float t sumocc = 0:
      for (Int_t ir=1; ir<=ipho; ir++) {</pre>
       occ[ir-1] = 1 - prb0[ir-1]:
       Float_t prb00 = 0;
       for (Int_t ip=1; ip<=ir; ip++) {</pre>
         prb00 += 1./Ncell * occ[ip-1];
       if(ir>1) prb0[ir] = prb00;
       occ[ir] = 1 - prb0[ir];
        sumocc += occ[ir]:
      phot[npho] = (double)ipho;
      socc[npho] = sumocc;
      ratio[npho] = socc[npho]/phot[npho];
KOREA UNIVERSITY
```

Occupation Probability

A signal model for an MPPC with thousands of microcells will be tested with a measurement of MPPC signals with an LED source.

Backup

Signal Amplifiers

- Very stable.
- Low R_s needed for fast SiPM signal → low signal-to-noise ratio.
- \bigcirc Gain = R_f/R_g typically 10

- Very low input impedance
 → preferred readout for SiPMs.
- \bigcirc Gain is defined by R_f .
 - 2018/03/16 Slide 20

Voltage Amplifier

Differential readout suppresses low to medium high

frequency pick-up.

Voltage Amplifier

 Signal becomes lower if device size (capacitance) gets larger due to capacitive divider (quenching and SiPM terminal capacitance).

Transimpedance Amplifier

Korta equerery pick-up.

Transimpedance Amplifier

 Signal stays the same for different device sizes, if input impedance of amplifier is lower than device impedance.

