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Biological effects induced by

lonizing radiation

Clin order to understand low-dose radiation
carcinogenesis, the evaluation of biological
effects induced by ionizing radiation is a major

scientific challenge
L Mullenders e l. (2009) Noture Reviews Cancer 9596,

COThe Monte Carlo method is typically employed
to evaluate radiation effectiveness
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Monte Carlo method a

- e.g.) the Geant4 toolkit

http://geant4.org

0 Computational technique based on random number generation

» Can accurately simulate the stochastic nature of particle-matter
interactions

0 General purpose Monte Carlo tools &%
have been developed (e.g. Geant4) &

» Open source
» “expandable” by the user

O However, Geant4 is not suitableto =
estimate biological damage |

» Condensed-history approach
» Cannot transport molecules

» Only physical particle-matter
interactions
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Monte Carlo track structure simulation 5

- e.g.) Geant4-DNA

http://geant4-dna.org

[d The Track Structure (TS) Monte Carlo method is today the most
reliable approach to evaluate biological effects induced by
ionizing radiation

» Step-by-step transport of physical particles (e.g. electrons)
» Molecular species simulation (e.g. hydroxyl radicals)
» Target properties (e.g. molecular cross sections, biological geometry)




Monte Carlo track structure simulation 6

- e.g.) Geant4-DNA

http://geant4-dna.org

[d The Track Structure (TS) Monte Carlo method is today the most
reliable approach to evaluate biological effects induced by
ionizing radiation

» Step-by-step transport of physical particles (e.g. electrons)
» Molecular species simulation (e.g. hydroxyl radicals)
» Target properties (e.g. molecular cross sections, biological geometry)




Step-by-step transportation

C1To accurately simulate step-by-step particle
transportation, accurate cross sections are needed

Clin particular, low energy secondary electrons are
important for the study of radiation damage to DNA
in the cell nucleus

» Inelastic interactions induce direct damage
» Elastic interactions determine electron "concentration"
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Elastic scattering in liquid water

— = Elastic (SR)

At low energy (< 100 eV), elastic _«} <. =~ =
scattering plays a key role L <} N
> Even if elastic scattering is not ;
associated with significant energy o
loss, it allows to describe the 0
spatial distribution of electrons T e
| S-Incer et l. 2014) el Instrum. Meth, 833352,

CIWe propose to improve the accuracy of the
modelling of electron elastic scattering in liquid

water

» To be used in particular in combination with soa inelastic
models developed at loannina U., in Greece
N
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Improving elastic scattering

0 The purpose of this study is to develop a new electron discrete elastic
scattering model for Geant4-DNA using the ELSEPA code developed by
Salvat F. et al. (Barcelona U.)

» Unfortunately ELSEPA can not handle liquid phase of water

O Steps

1. We first optimize the phenomenological parameters of ELSEPA, using
experimental data in the vapour phase water, assuming the free atom
approximation

2.  We then try to calculate the elastic cross section in liquid water using the Muffin-
tin approximation, typically employed to predict interaction in solid phase
material

0 In order to evaluate the impact of this new model on TS simulations, we
performed range, dose-point-kernel, and water radiolysis simulations
and compared to existing models available in Geant4-DNA
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1) Optimization of ELSEPA

parameters using vapour data
V(r) = Vu@r) + Vex(r) + ch(r) — 1Waps (1)

O Correlation-polarization potential for long-range trajectories V,,

» Buckingham as default
- Lindhard model as an alternative option for Muffin-tin approximation

» Influences small scattering angle

O Adjustable energy dependency b,,, for V,,

> by = yJmax{(E — 50)/16.1} as default
» Influences small scattering angle

O Absorption strength A, for inelastic absorption potential W,
» For water, ICRU-77 report recommends a value of 2
» Influences intermediate and large scattering angle

0 As an example...
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Example of optimization: A, 15
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0 DCSs are calculated
according to the
proposed parameters

O The results are
compared with
experimental data
based on the DCS
values at O deg and
on RMSE

O The optimal values
are then selected



2) Muffin-tin approximation

E, Vi A (r) — pe(r) +Pe(2Rmt - r) +Pu, r<< Rmta
pe,mt O’ r> Rm[,
0.991 A
\\ I / \
‘® /g 9@
\\\ \_/1
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0 The atomic electrons are assumed to be confined within a sphere of finite
radius, Ryt

O This approximation is typically employed to predict cross sections in solid-
phase material

O Muffin-tin radius selected: 1.405 A. _

» Half distance between oxygen atoms in liquid water
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Verifying the plausibility of calculations 17

using exp. data in vapour water
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O Unfortunately, no data exists in the liquid phase, so there is no way to fully validate cross
sections for the liquid phase
O Calculations based on a partial-wave formalism with a Dynamic Molecular framework have been
proposed by Aouchiche et al. (2008)
» The DCSs for liquid water are slightly lower (~ 2/3) than the DCSs for vapor water at 0°
O Taking into account such expected differences, we can check our ELSEPA calculations
» DCSs for liquid should be generally smaller than for the vapour phase at small scattering angle
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Verifying the plausibility of calculations 19

using exp. data in vapour water
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Verifying the plausibility of calculations 20

using exp. data in vapour water
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Results (1): ifferential ross ection (DCS) 21
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Results (2): otal lastic ross ection (TECS) and 29
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rack structure simulations

- Geant4-DNA examples

Three examples
o range example

~ Accumulated “Track length (nm)”

~ Distance between initial and final position, “Penetration (nm)”
o TestEm12 example

~ Energy deposition as a function of the distance from the source,
“Dose-point kernel (hm/eV)”

o chem6 example (new: created for this work)

~ The number of molecular species “G value (#/100 eV)”
- G values versus time
- G values versus linear energy transfer (LET)

And six Geant4-DNA Physics constructors for electrons
o Option2, 4, and 6 with and without new ELSEPA based elastic model
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Track length and penetration
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0 Elastic scattering model doesn’t impact track length
» except for option 6 considering small energy loss in elastic scattering (based on CPA100 MC code)

0 Less elastic scatterings and smaller scattering angles induce longer penetrations
0 The relative differences are less than 20% at low energy

“range” example

24

Option 2
Option 2 ELSEPA
Option 4
Option 4 ELSEPA

Option 6
Option 6 without energy loss
in elastic scattering

Option 6 ELSEPA

Pages (1972)

Watt (1994)

Akkerman and Akkerman (1999)
Pimblott and Siebbeles (2002)
Meesungnoen et al. (2002)
Wilson et al. (2004)

Uehara and Nikjoo (2006)
Plante and Cucinotta (2009)
Wiklund et al. (2011)

ICRU-90 (2016)

Emfietzoglou et al. (2017)



“TestEm12” example

25

Dose-Point Kernel (DPK)
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“chem6” example
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ater radiolysis results
- G versus
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“chem6” example
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ater radiolysis results
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Conclusions

0 We propose a new electron elastic cross section model for liquid
water based on ELSEPA assuming the Muffin-tin approximation

0 The phenomenological parameters including correlation-
polarizability potential and inelastic absorption potential have
been qualitatively optimized

0 The DCSs show improvement versus the other existing Geant4-

DNA models such as the SR, USR, and partial wave models,
comparing to experimental data

[0 The simulations with the new elastic model show reasonably
good agreement with all physics constructors in Geant4-DNA
» Up to about 20% at low energy for range and DPK
» Up to about 6% for water radiolysis simulations for option 2
[ This model will soon be released in Geant4

O —.——
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