

Silicon Tracker with International Education Objective (SiTrInEO Project)

France team

Université de Strasbourg, CNRS, IPHC

Jerome Baudot, Auguste Besson, Eric Chabert, Pierre Van Hove, Adèle Perus, Romain Schotter

Kyungpook National university (KNU)

Daekwon Kim, Jongho Lee, Chang-Seong Moon, Jeongmin Son

FKPPL workshop, Jeju, 2019 May 8 - 10

Outline

□ Introduction

□ SiTrInEO Collaboration

□ GEANT4 simulation studies

- Data analysis based on Electron gun and
 - Sr-90 source samples
- Measurement of electron momentum
- SiTrInEO hardware setup
- Summery & Plan

The Poster presented at Korea Physics Society (KPS) Meeting in April of 2019.

Introduction

- □ Motivation of the SiTrInEO project
 - > High energy physics based on the accelerator uses large-scale devices and infrastructure
 - > Difficult to understand for students the principles of the tracking system
- □ The main purpose of the SiTrInEO project
 - Help students to understand the basic tracking system
- □ The SiTrInEO is conducting joint research France-Korea through two cooperative projects.
 - Supported by the STAR program and FKPPL

The SiTrInEO Collaboration

□ KNU (Korea)

- CMS group
 - Staff: Chang-Seong Moon
 - Students: Jongho Lee, Daekwon Kim, Jeongmin Son

□ IPHC (France)

- CMS group
 - > Staff: Eric Chabert, Pierre Van Hove
- PICSEL group
 - Staff: Auguste Besson
- Belle II group
 - Staff: Jerome Baudot
 - Students: Adèle Perus, Romain Schotter

2019 FKPPL Workshop (Jeju Island)

Momentum Measurement Strategy

x-z view of the SiTrInEO setup

- □ The electron trajectory must be a straight line in x-z plane.
 - Magnetic field does not affect on electron trajectory in x-z plane.
 - The angle of Vector 1 and Vector 2 have to be the same in principle.

 $\Box \phi_{ij}$ (*i* = 1, 2, 3, *j* = 2, 3, 4) and $\Delta \phi$ are defined as in the left figure in order to compare the angles from two vectors.

Based on Electron gun sample (1.5 MeV), B-field magnitude : 0.2 T

SiTrInE(

SiTrInEO

Based on Sr-90 source sample, B-field magnitude : 0.2 T

2019 FKPPL Workshop (Jeju Island)

SiTrInEO

Generator level momentum distributions

□ Sharpe momentum distribution (peak: 1.5 MeV)

Blue: All electron events from Strontium-90 source
 Red: Selected events requiring at least one hit on each pixel layer.

$\Delta \phi$ distribution in x-z plane

> Required $|\Delta \phi| < 0.6$

Silrine

0 ΔΦ

$\Delta \alpha$ distribution in y-z plane

Electrons are bent in one direction by magnetic field.

2000

1.5

SiTrInE

2000

-1.5

-1

-0.5

0

Δα

0.5

1.5

0.5

0

Δα

-0.5

 \Box Most events are distributed in 0.2 < $\Delta \alpha$ < 1.2 and $|\Delta \phi|$ < 0.5 for both cases.

> Signal region : $|\Delta \phi| < 0.6$ and $\Delta \alpha > 0$

□ Events in 1.5 MeV Electron gun sample spread more broadly.

Reconstructed momentum distributions (I)

□ Reconstructed momentum distributions are reasonably fitted well with Landau distribution.

□ Most probable value (MPV) in both distributions:

- Electron gun: 1.48 MeV (Gen-level momentum: 1.5 MeV)
- Sr-90 source: 1.19 MeV (Average gen-level momentum: 1.43 MeV)

□ Investigating the reason of the low reconstructed momentum in Sr-90 source sample

❑ Left: Reconstructed momentum as a function of gen-level momentum

- Slightly lower measured the momentom w.r.t the gen-level momentum (Investigating)
- □ Right: Uncertainty of reconstructed momentum as a function of gen-level momentum
 - > 10-15% of uncertainty measured.

Momentum resolution from simulation studies

□ Definition of momentum resolution:

 $\succ \sigma_p \equiv (Reco P - True P) / True P$, where P is momentum

□ Momentum resolutions are measured for both 1.5 MeV Electron gun and Sr-90 samples

- > Electron gun: MPV ~ 0.004, σ ~ 0.165
- > Sr-90 source: MPV ~ 0.153, σ ~ 0.114

"Mockup" setup at IPHC, Strasbourg

3D sketch of the first setup for SiTrInEO

Realistic setup

Chang-Seong Moon (KNU)

2019 FKPPL Workshop (Jeju Island)

SiTrInEO pixel sensor

 $960x928 \sim 0.9$ Mpixels pitch 20.7x20.7 μ m²

→ Sensitive area 19.7x19.2 mm² → Total area 20.2x22.7 mm²

- \rightarrow binary output
- \rightarrow readout time 192 μ s

Halbach magnet

□ Use several small magnets to:

- Increase the field strength
- Improve field homogeneity

Exchanging researchers

□ From Korea to France

- Jun, 2018: Jongho (2 weeks)
- Jun, 2019: Chang-Seong (1 week)
- July, 2019: Daekwon (1 week)

□ From France to Korea

- Dec, 2018: Jerome (1 week)
- Mar, 2019: Adèle and Romain (1 week)
- Expecting visitors in October, 2019

Summary & Plans

- □ Full simulation studies based on the GEANT4 for the SiTrInEO were performed.
 - Good agreement with generated and reconstructed electron momenta using Electron gun and Sr-90 samples
- □ The momentum reconstruction algorithm have been developed using the ROOT framework.
 - > Optimized geometry of the pixel sensors and magnetic field to improve the algorithm performance.
- □ Preliminary results based on the GEANT4 simulation presented at the KPS meeting.
- □ The "Mockup" setup for the SiTrInEO project has been completed based on the simulation studies.
- Ready to take real data with complete setup for the SiTrInEO tracker
 Stay tuned!

Thank you

2019 FKPPL WORKSHOP (JEJU ISLAND)

Backup

2019 FKPPL WORKSHOP (JEJU ISLAND)

Electron gun sample (2 MeV), B-field magnitude : 0.2 T

2019 FKPPL Workshop (Jeju Island)

Electron gun sample (1.5 MeV), B-field magnitude : 0.2 T

Electron gun sample (1.0 MeV), B-field magnitude : 0.2 T

Shape comparison of momentum distributions

Sr-90 source sample

Blue: All electron events from Strontium-90 source Red: Selected events requiring at least one hit on each pixel layer

Normalized distribution

Chang-Seong Moon (KNU)

2019 FKPPL Workshop (Jeju Island)

Reconstructed momentum distributions – landau fits

2019 FKPPL workshop (Jeju Island)