

AMPについて 2010/12/2

内顯

AMP回路図1

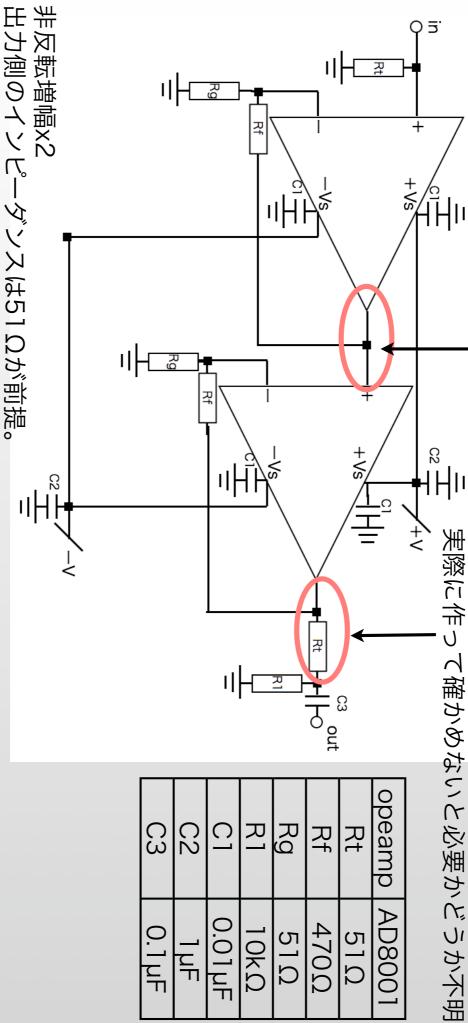
C2	C1	R4	R3	R2	R1	Rg	Rf	Rt	opamp	
$1\mu \mathrm{F}$	$0.01 \mu F$	$10 \text{k} \Omega$	$1 \text{k} \Omega$	10Ω	40Ω	51 Ω	470Ω	51Ω	AD8001	値または型番

Input Current noise	Input Voltage noise	Input Offset Voltage	出力電流	0.1% Settling Time	スルーレート	-3dB 帯域幅	最大定格	Gain flatness 0.1 dB	
$2 \text{pA} / \sqrt{Hz}$	$2 \text{nV} / \sqrt{Hz}$	$2 \mathrm{mV}$	70 mA	10 nsec	$1200 V/\mu sec$	880 MHz (G=+1)	$55 \text{mW} (\pm 5 \text{V}, 5.5 \text{mA})$	$100 \mathrm{MHz}$	

Table. 5.5 AD8001 基本特性

オフセット調整幅	ダイナミックレンジ (電圧)	ダイナミックレンジ (電荷)	帯域幅	増倍率 (電圧)	増倍率 (電荷)
$-1.35V\sim1.25V$	$0 \sim 1000 \mathrm{mV}$	$0 \sim 500 \mathrm{pC}$	$\sim \! 150 { m MHz}$	49.31	48.52

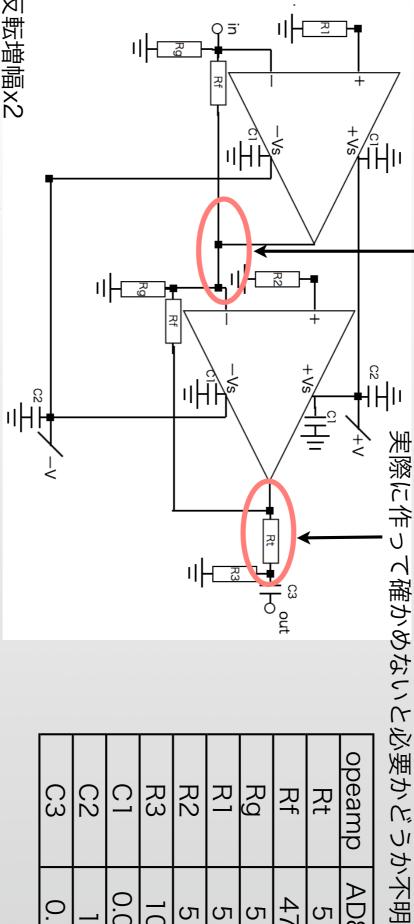
- 非反転增幅x2
- デメリットは回路のパターンをよく考えないと発振すること


(非反転増幅が元々発振しやすい+AD8001が電流帰還形で発振しやすいため)

- ・去年の12月のビームテスト時に使用したamp。
- 若干複雑。
- ・今作るなら。。。(次ページ)

AMP回路図2

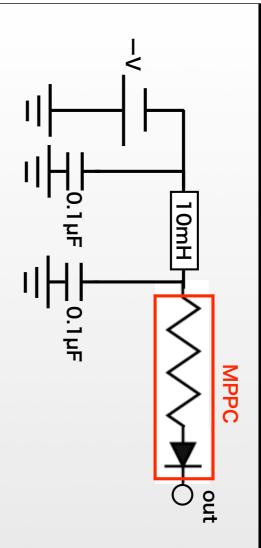
offsetが消えない場合はここにACカップル入れる



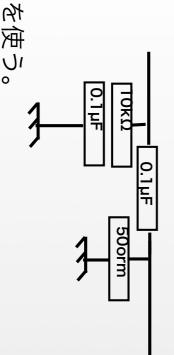
C3	C2	C1	R1	Rg	Rf	Rt	opeamp
0.1µF	1μF	0.01µF	10kΩ	51Ω	470Ω	51Ω	AD8001

- 出力側はπ型のACカップルでイフカット際共。
- (これではオフセットを除去しきれないかも。駄目な場合は前段と後段の間に 10kΩ+0.1μF+51Ωのπ型ACカップルを入たる)
- ・(Rf+Rg)/Rgが保存するようにRfとRgを大きくすると発振しにくくなる (ノイズ→大、AMPが遅くなるが。。。)

offsetが消えない場合はここにACカップル入れる



C3	C2	C1	R3	R2	R1	Rg	Rf	Rt	opeamp
									0
0.1µF	1μF	0.01µF	10kΩ	51Ω	51Ω	51Ω	470Ω	51Ω	AD8001


- J側のインピーダンスは21Ωが削提。 J側はπ型のACカップルでオフセッ
- 出力側はπ型のACカップルでオフセット除去。(これではオフセットを除去しきれないかも。駄目な場合は前段と後段の間に(これではオフセットを除去しきれないかも。駄目な場合は前段と後段の間に10kΩ+0.1μF+51Ωのπ型ACカップルを入れる)R1,R2は弄らないといけないかも(発振したらここを小さくする,AMPの速さは変化しない)。(Rf+Rg)/Rgが保存するようにRfとRgを大きくすると発振しにくくなる
- (ノイズ→大、AMPが遅くなるが。。。

MPPCまわり

- ・RCでちょうど良さげなlow passを作ると、3mm角MPPCではRで電圧降下が起きて、 (MPPCの暗電流のせい)印可電圧とgainの線形性が無くなる。
- ・outがOVで無い時(ex MPPCに+のHVを掛ける)ACカップルとして

