Equivalent circuit model of MPPC

Korea Univ. Wooseung Jung

GEIGER-APD

RS : Resistance of the entire APD during a discharge RQ :Quenching resistor CJ : Junction capacitance

typical values RS ~1 k, RQ~150 k, Cj~0.1 pf

OFF

 V_{BR}

 R_{S}

I

 $R_{\rm Q}$

Cт

Diode (APD)

 V_{BIAS} -Q/C_i-iR_Q=0 V_{BIAS} - V_{BR} - $(i-I)R_S$ -i R_Q =0 $\tau_r = C_j \frac{(R_S R_Q)}{(R_S + R_Q)} \sim C_j R_S \ (\because R_Q \gg R_S) \ i = \frac{V_{BLAS} - V_{BR}}{R_S + R_Q} (1 - e^{-t/\tau_r}) \sim \frac{V_{BLAS} - V_{BR}}{R_Q} (1 - e^{-t/\tau_r})$ $\tau_r = C_i R_O$ \sim (V_{BIAS} – V_{BR})/R_O i *i-I* $i_{\rm max}$ **VBIAS** \sim [1-exp(-t/R_s×C_J)] V_D \sim exp(-t/R_Q×C_J)

 t_i t_{max}

By Kirchhof's current law

Equivalent circuit of MPPC's single GAPD

Current flowing through the APD as a function of time

"ready"

time

"ready"

STRUCTURE OF THE MPPC

Structure of the MPPC

Equivalent circuit of the MPPC

EQUIVALENT CIRCUIT OF THE MPPC

Equivalent circuit of the MPPC N: total # of pixels of the MPPC n: # of fired pixels of the MPPC fired pixels(n pixels) Ra Ra Ra Ra Rq/(N-n) Rg/n *nI… …* Vbr nCj $(N-n)Cj$ \sum *Rs_I* nI_1 $\left[\begin{array}{c|c} mI_2 & f(N-n)I' \end{array}\right]$ **RS : Resistance of the entire APD RQ :Quenching resistor** HV **CJ : Junction capacitance** *i*

R1 and R2 : series resistors in circuit (Let R= R1+R2)

HV

EQUIVALENT CIRCUIT OF THE MPPC

Equivalent circuit of MPPC

RS : Resistance of the entire APD RQ :Quenching resistor CJ : Junction capacitance

N: total # of pixels, n: # of fired pixels R1 and R2 : series resistors in circuit (Let R= R1+R2)

By Kirchhof's current law i=nI+(N-n)I', $I = I_1 + I_2$ $V_{BIAS} - V_{BR} - iR - I_1 R_S - I R_Q = 0$ $V_{BIAS} - iR - Q/C_i - IR_Q = 0$ $V_{BIAS} - iR - Q'/C_i - I'R_Q = 0$

$$
\begin{aligned}\n\text{Leading edge} \\
\tau_r &= C_j R_S \\
i &= \frac{n(V_{BIAS} - V_{BR})}{nR + R_S + R_Q} \left(1 - e^{-t/\tau_r} \right) \sim \frac{n(V_{BIAS} - V_{BR})}{R_Q} \left(1 - e^{-t/\tau_r} \right) \\
I &= \frac{n(V_{BIAS} - V_{BR})}{nR + R_S + R_Q} \sim \frac{n(V_{BIAS} - V_{BR})}{R_Q}\n\end{aligned}
$$

Trailing edge $\tau_t = C_j(R_Q + NR)$

PREVIOUS TEST CONDITION

MPPC has 16 channels

- ➤ **Sixteen Channels were connected in parallel**
- ➤ **Single DC power applied same voltages for all channels**
- ➤ **Current outputs of every channel's were gathered**

MPPCS IN PARALLEL CONNECTION

Equivalent circuit

R_S: Resistance of the entire APD **RQ :Quenching resistor CJ : Junction capacitance**

N: total # of pixels, n: # of fired pixels R1 and R2 : series resistors in circuit (Let R= R1+R2)

Assume that number of 'a' MPPCs are connected in parallel Only one thing is different from single MPPC, N->aN

For the leading edge, all parameters and values still remain same

$$
\begin{aligned}\n\text{Leading edge} \\
\tau_r &= C_j R_S \\
i &= \frac{n(V_{BIAS} - V_{BR})}{nR + R_S + R_Q} \left(1 - e^{-t/\tau_r}\right) \sim \frac{n(V_{BIAS} - V_{BR})}{R_Q} \left(1 - e^{-t/\tau_r}\right) \\
I &= \frac{n(V_{BIAS} - V_{BR})}{nR + R_S + R_Q} \sim \frac{n(V_{BIAS} - V_{BR})}{R_Q}\n\end{aligned}
$$

Time constant of fall time has a term promotional to 'a' So, tailing edge become longer

$$
\tau_t = C_j R_Q + a \times C_j N R
$$

REFERENCE OF MULTI-MPPC BIASING

MEG Collaboration's test results

Kaneko, D., Performance of UV-sensitive MPPC for liquid xenon detector in MEG experiment,

DOI:10.1109/NSSMIC.2013.6829484.

Fig. 10. Connection of 4 MPPCs, 4-parallel, 2-series 2-parallel and 4-series correspond (a), (b) and (c) respectively.

MPPCS IN SERIES CONNECTION

Equivalent circuit

RS : Resistance of the entire APD RQ :Quenching resistor CJ : Junction capacitance

N: total # of pixels, n: # of fired pixels R1 and R2 : series resistors in circuit (Let R= R1+R2)

Load of the other MPPCs Bias voltage should become larger in proportional to the number of MPPCs

Assume the condition that photons are firing only one MPPC (the other cases can be described as a superposition of above situations)

Because of load of additional MPPCs, it is hard to get exact solutions. With another assumption dI/dt = 0, rising edge shape remains almost same But there is a small voltage drop occur through series MPPCs

$$
{-\tau r}^{\tau}\sim C{j}R_{S}
$$

For the tailing edge, time constant become small, So, signal also become shorter

$$
\tau_t = C_j R_Q + C_j N R/a
$$

