Summary of Kinematical cuts

G.Y.Lim 19th, April, 2018

Selection Cuts

- Obtained data contains lots of background
 - Background: Unwanted events such as different modes of the Kdecay, pi0 generation etc.
- In order to select signal only by rejecting background, we use observables which have different distribution between signal and background
 - Keep signal as large as possible and to reject background as many as possible

Current default cut condition

٠

Default cut from Proposal

New cut from run49 analysis

	min	max			min	max
γ energy energy	>100MeV	<2000MeV	γ total energy energy	>	650MeV	
Csl fiducial	min(x,y)>150mm	R<850mm	COE	>	200mm	
vertex z	>3000mm	<5000mm	Cluster RMS		>10	
Pt	>130MeV	<250MeV	Cluster Size		>4	
projection angle		<150deg	Vertex time difference			<2ns
cluster distance	>3000mm		min. distance from			
γ total energy energy	>500MeV		dead ch	:	>53mm	
Eθ	>25000MeVdeg	two gamma		I		
Energy ratio	>0.2	from pi0	 New cut from run62 analysis 			
Pi0 Kinematic Cut					min	max
Shape χ^2	<4.6		Cluster Discriminatio	on	>0.8	
						n/gamma

Veto set

	Energy	Timing
FB,NCC	1MeV	±20ns
MB	1MeV	±30ns
BCV	0.5MeV	±30ns
OEV	1MeV	±10ns
CV	0.2MeV	±40ns
LCV	0.6MeV	±15ns
Hinemos	1MeV	±15ns

	111111	пал
Cluster Discrimination	>0.8	
Pulse shape Likelihood ratio	>0.1	
Max Theta χ^2	>4.5	

	Energy	Timing
CC03-06(Csl)	3MeV	±15ns
CC04-06(Scinti)	1MeV	±15ns
BHCV	0.3MeV	±7.5ns
Extra cluster		±10ns

Csl single crystal: <10MeV(200mm)-3MeV(600mm) 29 BHPV: <3Module coincidence (±7.5ns)

Use well reconstructed gamma

Energy

Gamma energy distribution 125MHz, 14 bit (2¹⁴ = 16384) Resolution

Fiducial Shower leakage

PT-Z plot

 Background estimation for understanding remaining events around signal box.

Projection angle

- Two body kinematics
- To reject KL->gamma gamma

Cluster distance

- separation ability
- kinematics of pi0 decay

Gamma total energy

- pi0 from KL (500 MeV/ c^2)
- Trigger by using Esum

COE : center of energy

- weighted mean in Csl surface
- All particles enter Csl, COE=0

Distance from dead channel - Incorrect gamma information

Vertex time difference - To reject accidental coincidence

Proposal p59

Cluster, shower shape cut

Shape Chi-2

- discrepancy to the template
- (Given energy, given angle) Size : How many crystals make cluster RMS : $\sqrt{\sum_{i} \frac{\epsilon_{i}r_{i}^{2}}{\sum_{j}\epsilon_{j}}}$,

Pulse shape analysis

$$A(t; A, t_0, \sigma_0, a) = |A| \exp\left(-\frac{(t - t_0)^2}{2(a(t - t_0) + \sigma_0)^2}\right)$$

Y. Sugiyama Ph.D. thesis Osaka Univ.

Cluster Shape Discrimination

Yu-Chen Tung 2016-07-15