

Members

France:

- Vivian Poulin (PI, LUPM) : Neutrino cosmology, Atroparticle physics
- Pasquale Serpico (ex-PI, LAPTh) : Neutrino cosmology, Atroparticle physics
- and two more students

Japan:

- Kazunori Kohri (PI, KEK) : Inflation, Dark Matter, Neutrino Cosmology
- Satoshi Iso (KEK) : Superstring, Higgs, Baryogenesis, Inflation, Dark Energy
- Nagisa Hiroshima (Riken) Dark Mater, High-energy astrophysics
- and two more student and postdoc

Past common articles within 3 years

- 1) Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics By J. Chluba et al., arXiv:1903.04218 [astro-ph.CO].
- 2) CMB bounds on disk-accreting massive primordial black holes By Vivian Poulin, Pasquale D. Serpico, Francesca Calore, Sebastien Clesse, Kazunori Kohri, Phys. Rev. D96 (2017) no.8, 083524.

more than 60 citations in 2 yrs

 3) QCD-Electroweak First-Order Phase Transition in a Supercooled Universe, By Satoshi Iso, Pasquale D. Serpico, Kengo Shimada, Phys. Rev. Lett. 119 (2017) no.14, 141301.

So successful!

Funding Requests

	Funding Re	equest from France	ته ;	
Description * ²	€/unit 🕶	Nb of units 🕶	Total (€) 🕶	Requested to:
Travel expenses ↔	2000	2 travels	4000	FJPPL 🕶
Lodging expenses + per diem 🕶	160/day	15 days	2400	FJPPL 🕶
∎ Total 🕶	¢9	¢	6400	م
•	Funding R	equest from KEK	م ا	
Description 🕶	k¥/Unit ↔	Nb of units 🕶	Total (k¥) ≁²	Requested to:
Travel expenses 🕶	200	3 travel	600	KEK 🕶
Lodging expenses + per diem	21/day	18 days	378	KEK 🕶
• Total 🕶	ęJ	ل ه	978	¢

Summary of the projects

We study the following subjects in the Universe

- (1) The origin of baryon asymmetry (visible-matter asymmetry)
- (2) The origin of neutrino masses
- (3) The nature of dark matter (invisible matter)
- (4) The nature of the inflaton field which induces the inflationary Universe
- (5) The nature of dark energy
- (6) The Higgs stabilization problem

(4) Inflation and (3) Dark Matter

[and (1) baryon#, (5)dark energy,...]

Main theme in this fiscal year

Primordial Black Holes (PBHs)

To understand Higgs and Inflation

Binary PBHs can produce GWs

https://www.youtube.com/watch?v=1agm33iEAuo

GW150914 and its merger rate

M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama (2016).

Primordial Black Holes (PBH) can be sources of GWs, SMBHs, 100%, and dark matter

• At a smaller scale, the density perturbation produced by inflation can have a high peak

Kazunori Kohri (KEK/Sokendai)

Destabilized Higgs vev by de Sitter fluctuation during Inflation

Event Horizon Telescope

- Observed M87 has the mass $M_{BH} \sim 7 \times 10^9 M_{solar}$
- Schwarzschild Radius $R_{Sch}=2 M_{BH}^{2} \times 10^{10} \text{ km}$
- Photon sphere $R_{photon} = 3\sqrt{3} M_{BH} \sim 2.6 R_{Sch} \sim 5 \times 10^{10} km$

PBH?

Open Question: How to produce such a SMBH with O(10⁹)M_{solar}?

How to explain the GW events, dark matter, and Super-Massive BHs? **PBH!**

- Inflation (quantum fluctuation as a seed)
- Binary formation (GW event rates)
- Baryonic accretion (increasing masses)

Cosmological Accretion on to PBHs

- A completely new subject in cosmology
- How baryon can accrete on PBHs at z_{redshift} < 100?

• Future CMB and 21cm can constrain scenarios

Projects in this year

I. <u>Super Massive Black Hole, dark matter and PBHs</u>:

Baryonic matter can accrete on to PBHs inevitably in the Early Universe, which can solve problems in dark matter and a origins of Super Massive Black Hole

II. CMB and 21cm line constraints on PBHs

21cm line (EDGES and SKA) and **CMB polarization** (LiteBIRD and CMB-S4) observations can constrain histories of accretions onto PBHs.

Common Articles Expected

- Authors: Nagisa Hiroshima (Riken), Kazunori Kohri (KEK), Viviaon Poulin (LUPM), and Pasquale Serpico (LAPTH)
 Title: ``Evolutions of PBH masses by accretions
 - on to systems of PBHs and CDM halos "
- Authors: G. F. Abellan, Viviaon Poulin (LUPM), Kazunori Kohri (KEK), Pasquale Serpico (LAPTH), and Nagisa Hiroshima (Riken)
 Title :"Constraining PBH with EDGES and future 21cm experiment."