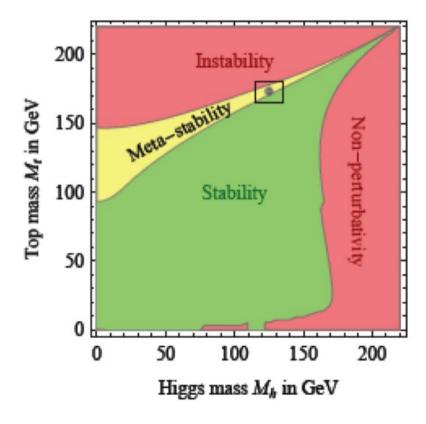


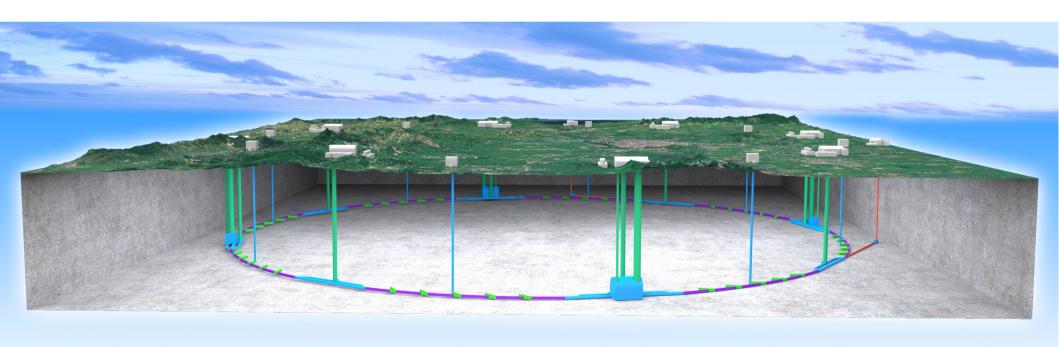
. Mangi Ruan

On behavior of the CEPC Study Group



SM is **NOT** the end of story...

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry

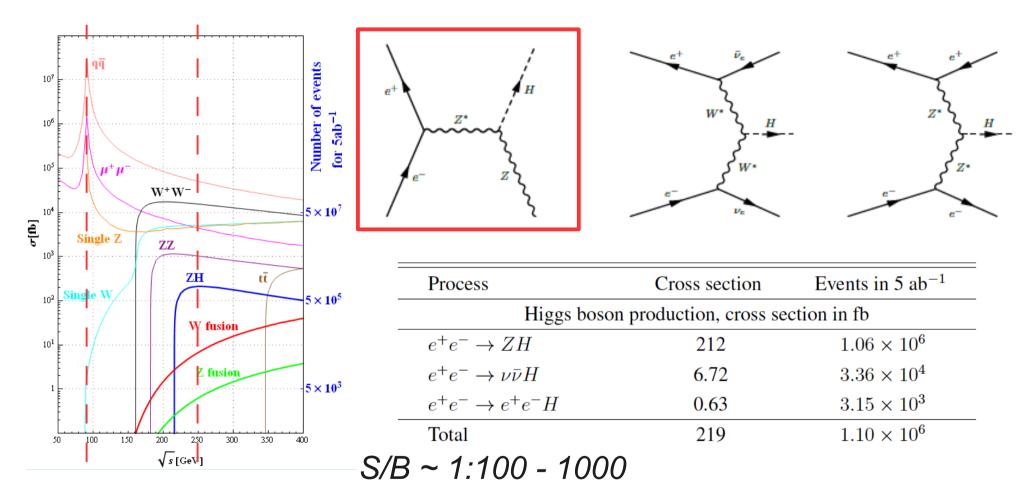

Most issues related to Higgs

 $m_H^2 = 36,127,890,984,789,307,394,520,932,878,928,933,023$ -36,127,890,984,789,307,394,520,932,878,928,917,398 $= (125 \text{ GeV})^2 ! ?$

Key: a precise Higgs factory

- Higgs mass ~ 125 GeV, it is possible to build a Circular e+e- Higgs factory (CEPC), followed by a proton collider (SPPC) in the same tunnel
- Looking for Hints (from Higgs) at CEPC → direct search at SPPC

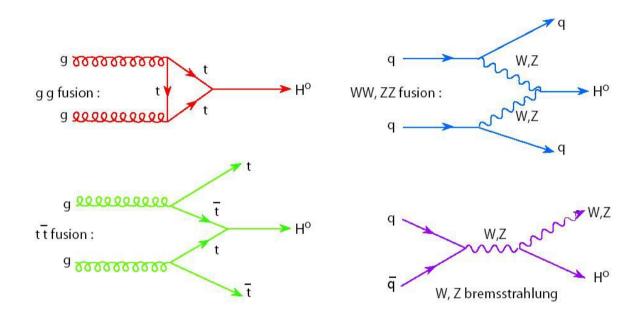
Science at CEPC-SPPC


- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 10B Z boson
 - Precision test of the SM
 - Rare decay
 - Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)

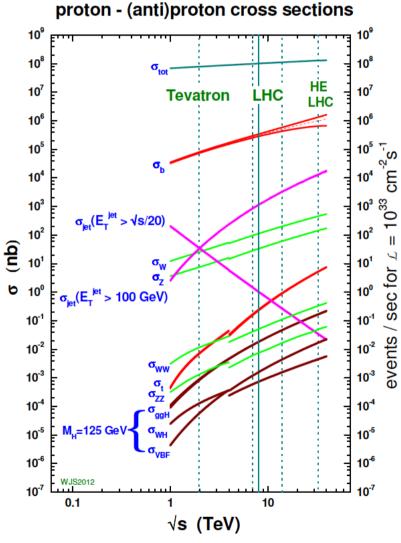
- ...

Heavy ion, e-p collision...

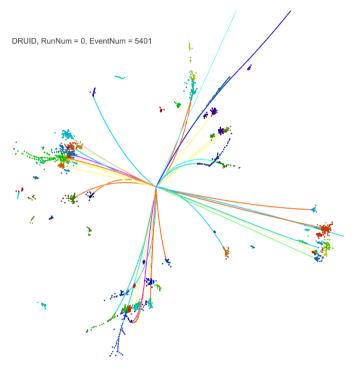
Complementary

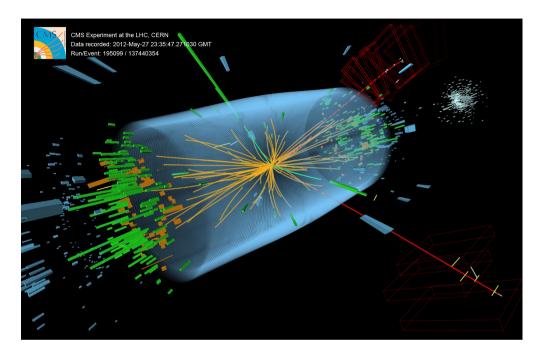

Higgs @ CEPC

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)*Br(H\rightarrow X)$), Diff. distributions


Derive: Absolute Higgs width, branching ratios, couplings

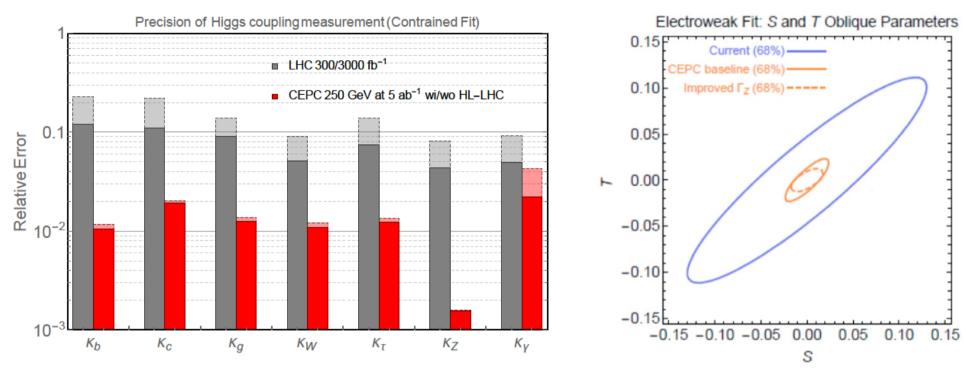
Higgs @ LHC




S/B ~ 1:1E10 !!!

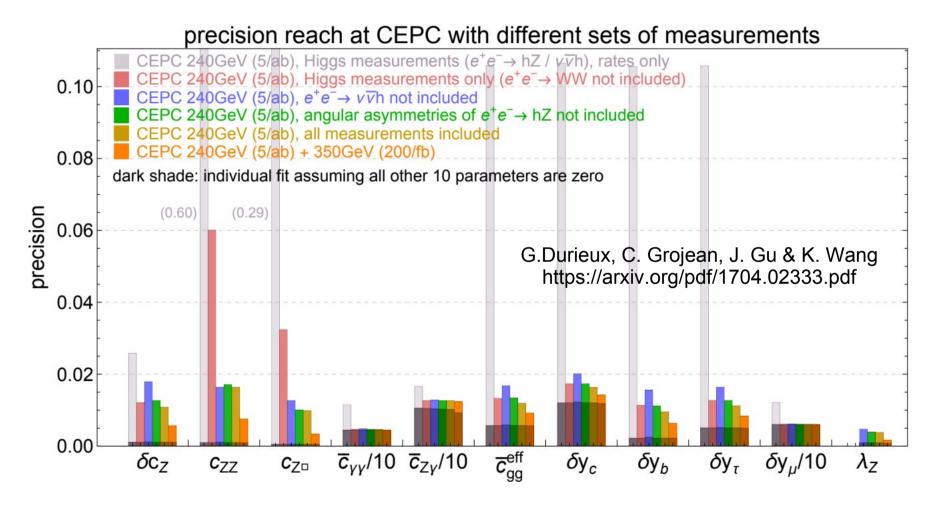
 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

Higgs measurement at e+e- & pp


	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

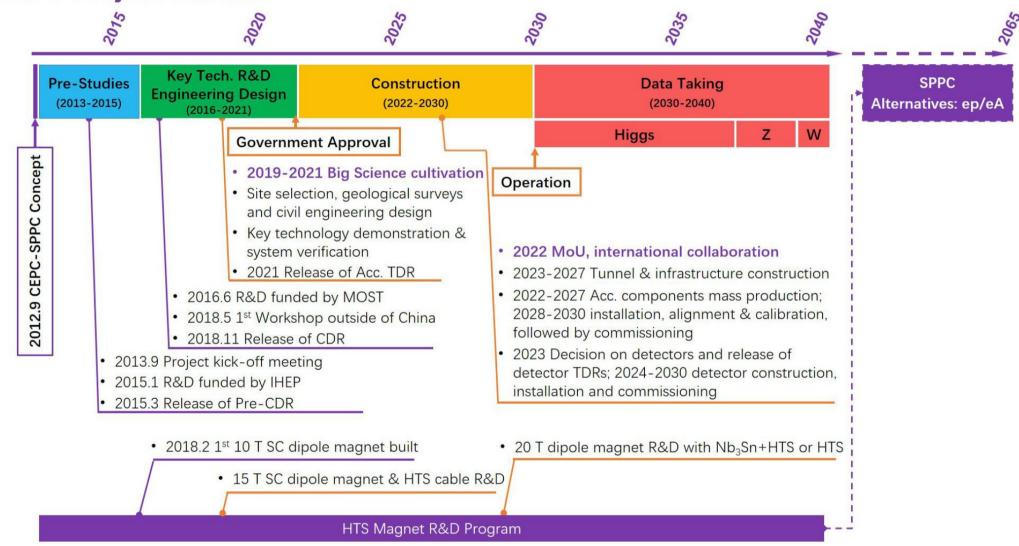
Status of W/Z physics study in CEPC

- The prospect of W/Z physics study in CEPC are under study
- Mainly based on projection from LEP


Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z threshold scan	$3.2 \mathrm{ab}^{-1}$
$A_{FB}^{0,b}$	1.7%	0.1%	Z threshold scan	$3.2\mathrm{ab}^{-1}$
$A_{FB}^{0,\mu}$	7.7%	0.3%	Z threshold scan	$3.2\mathrm{ab}^{-1}$
$A_{FB}^{0,e}$	17%	0.5%	Z threshold scan	$3.2\mathrm{ab}^{-1}$
R_b	0.3%	0.02%	Z pole	$3.2\mathrm{ab}^{-1}$
R_{μ}	0.2%	0.01%	Z pole	$3.2\mathrm{ab}^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5ab^{-1}$
m_W	33 MeV	2-3 MeV	ZH runs	$5 \mathrm{ab}^{-1}$
m_W	33 MeV	1 MeV	WWthreshold	$2.5 \mathrm{ab}^{-1}$

Physics Potential

- The nature of Higgs boson & EWSB, + flavor physics...
 - Higgs signal strengths (In kappa framework): expected accuracy roughly 1 order of magnitude better than HL-LHC
 - Absolute measurement to the Higgs boson: 2-3% level accuracy of Higgs boson width, 10⁻³ 10⁻⁵ up limit to Higgs invisible/exotic decay modes (improved by at least 2 orders of magnitude comparing to HL-LHC)
- Improve EW measurement precision by at least 1 order of magnitude 08/05/2019
 FKPPL@JEJU


Pheno-studies: EFT & Physics reach

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)

Timeline

CEPC Project Timeline

CDR released in Nov. 2018

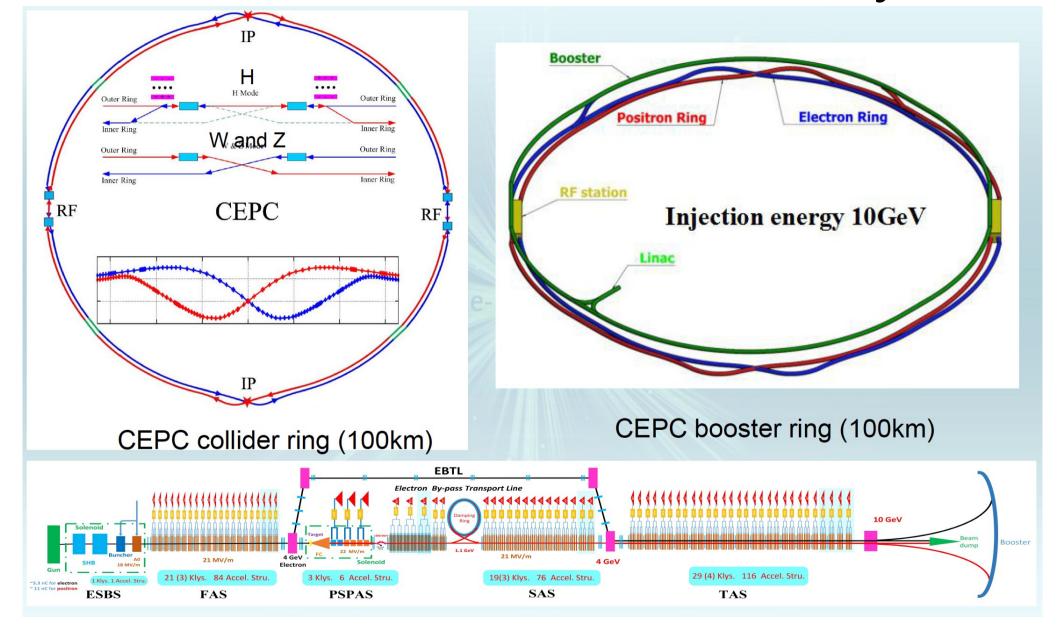
IHEP-CEPC-DR-2018-01

CEPC

Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018 IHEP-EP-2018-02

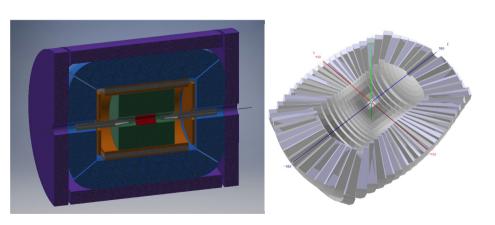

CEPC

Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group October 2018

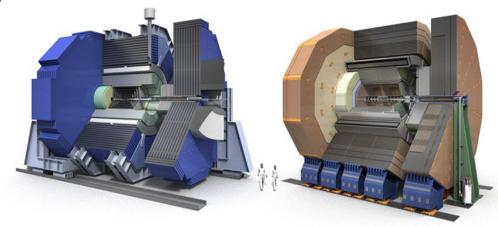
CEPC Accelerator Baseline Layout

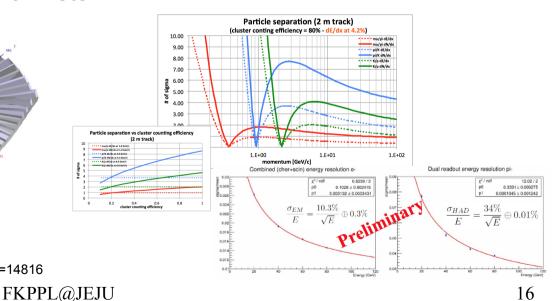


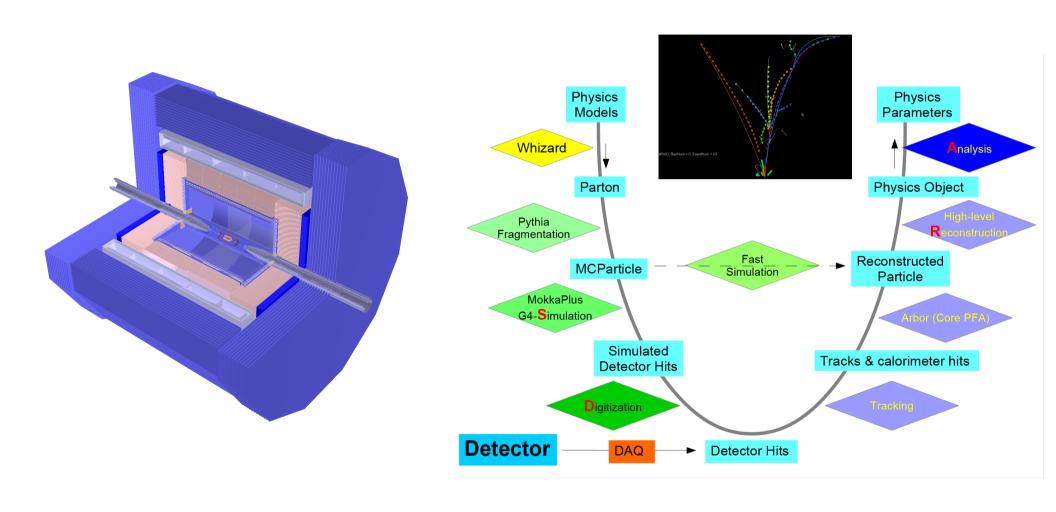
D. Wang

	Higgs	W	Z(3T)	Z(2T)	
Number of IPs	2				
Beam energy (GeV)	120 80 45.5				
Circumference (km)	100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	6	
Crossing angle at IP (mrad)		16.5×2			
Piwinski angle	2.58	7.0	23.8	3	
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+	+10%gap)	
Beam current (mA)	17.4	87.9	461.	0	
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)	10.7				
Momentum compact (10-5)		1.11		Type 1	
$β$ function at IP $β_x*/β_y*(m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_{x}/\varepsilon_{y}$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_{x}/\sigma_{y}(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage $V_{RF}(GV)$	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)	# 5 / // 11	650 (216816)			
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_z (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.1	0.05	0.023		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

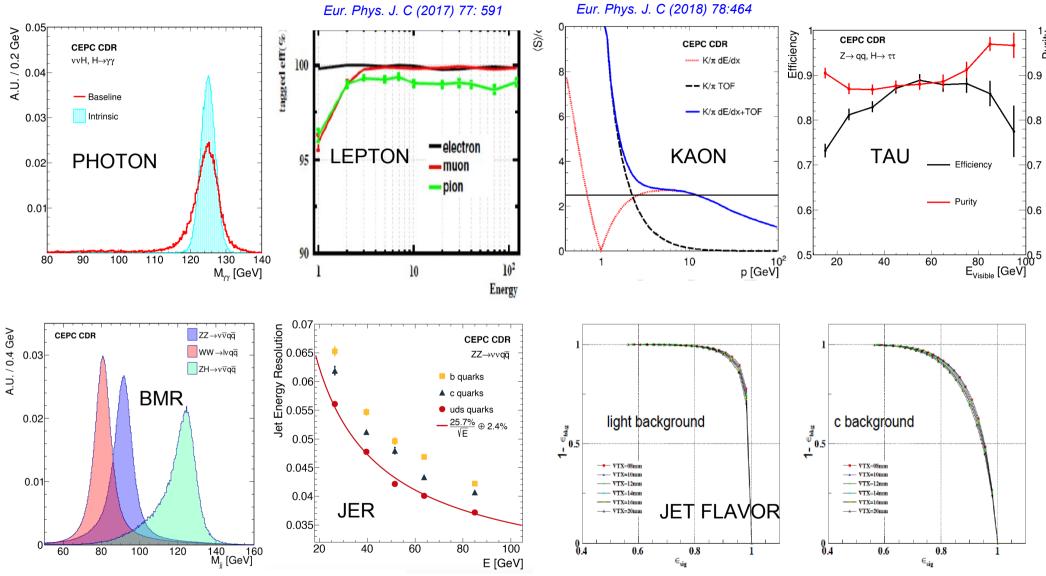
Two classes of Concepts


- PFA Oriented concept using High Granularity Calorimeter
 - + TPC (ILD-like, Baseline)
 - + Silicon tracking (SiD-like)
- Low Magnet Field Detector Concept (IDEA)
 - Wire Chamber + Dual Readout Calorimeter

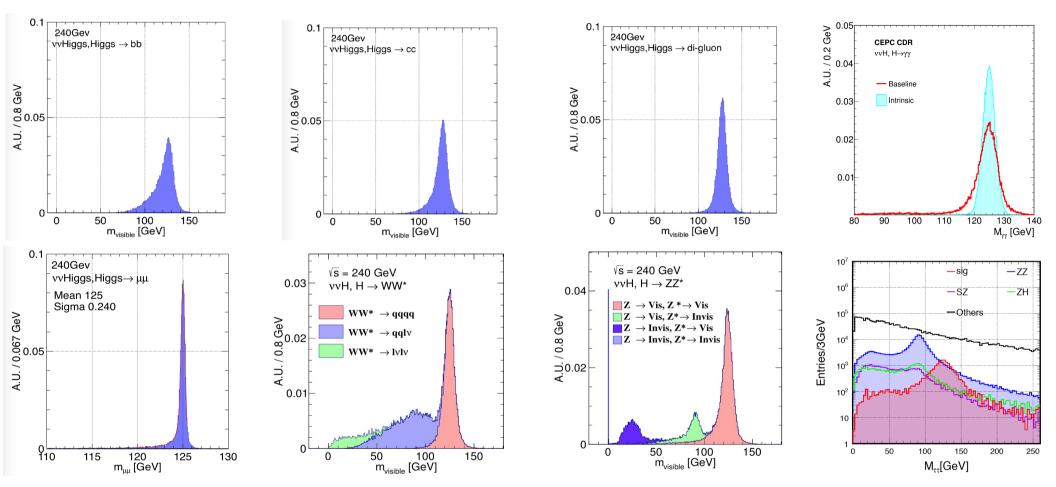



https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=14816

08/05/2019



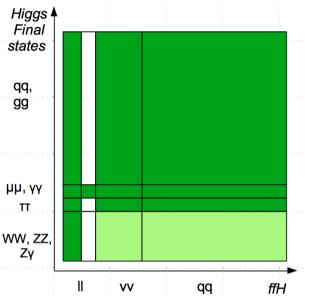
Software & Reconstruction

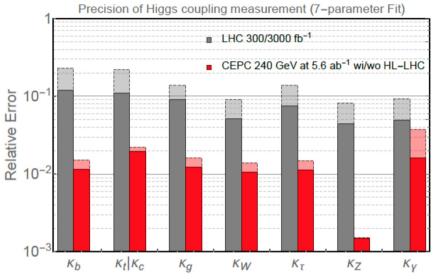

Starting from the ilcsoft & rewriting all the PFA/high-level reconstruction algorithms.

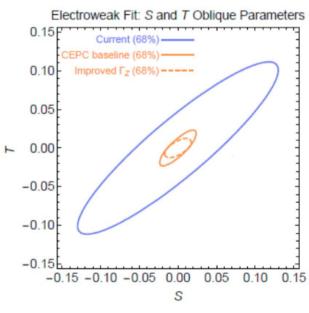
Physics Objects

Eur. Phys. J. C (2018) 78: 426

Reconstructed Higgs Signatures



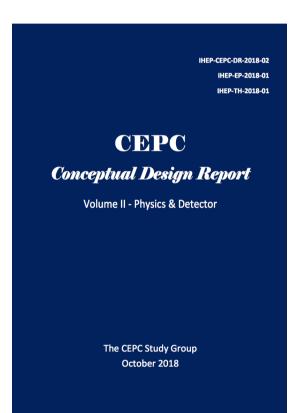

Clear Higgs Signature in all SM decay modes


Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

Right corner: di-tau mass distribution at qqH events using collinear approximation 68/05/2019 FKPPL@JEJU

Applied to physics potential study

Precision Higgs Physics at CEPC


Initial assessments of Higgs physics potential at the CEPC based on the white paper (to be submitted)

Chinese Physics C Vol. XX, No. X (201X) 010201

Precision Higgs Physics at the CEPC*

Fenfen An 4.21 Yu Bai⁹ Chunhui Chen²¹ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴
Zhenwei Cui³ Yaquan Fang^{4,6} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²⁰ Yuanning Gao⁵
Shao-Feng Ge^{15,27} Jiayin Gui¹³ Fangyi Guo^{1,4} Jun Guo^{10,11} Tao Han^{5,29} Shuang Han⁴
Hong-Jian He^{10,11} Xianke He¹⁰ Xiao-Gang He^{10,11} Jifeng Hui¹⁰ Shih-Chieh Hsu²⁰ Shan Jin⁸
Maoqiang Jing^{4,7} Ryuta Kiuchi⁴ Chia-Ming Kuo¹⁹ Pei-Zhu Lai¹⁹ Boyang Li⁵ Congqiao Li³ Gang Li⁴
Haifeng Li¹² Liang Li¹⁰ Shu Li^{10,11} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijiun Liang⁴
Libo Liao⁴ Bo Liu^{4,21} Jianbei Liu¹ Tao Liu⁴ Zhen Liu^{24,28} Xinchou Lou^{4,6,31} Lianliang Ma¹²
Bruce Mellado¹⁷ Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²² Zhuoni Qian¹⁸
Nikolaos Rompotis²⁰ Manqi Ruan⁴ Alex Schuy³⁰ Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴
Shufang Su²³ Dayong Wang³ Jing Wang⁴ Lian-Tao Wang²⁵ Yifang Wang^{4,6} Yuqian Wei⁴
Yue Xu⁵ Haijun Yang^{10,11} Weiming Yao²⁶ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴

https://arxiv.org/pdf/1810.09037.pdf FKPPL@JEJU

Recent Progresses

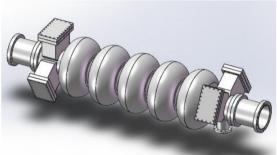
- New beam parameters
- Accelerator technologies
 - SRF
 - Klystron
- High Temperature Super Conductor
- Link to the industrial
- Civil & Site Study

 Many slides are taken directly from the Prof. Foster and Prof. Gao's summary talks at the CEPC Oxford Workshop

Beam parameters: higher Luminosity

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs	2				
Beam energy (GeV)	120	80	45.5		
Circumference (km)	100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)	16.5×2				
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (1010)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21μs)	12000 (25ns+10%gap)		
Beam current (mA)	17.4	87.9	461.0		
Synchrotron radiation power /beam (MW)	30	30	16.5		

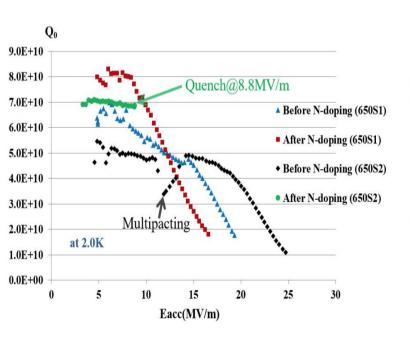
CDR Parameters:


Lifetime (hour)	0.67	1.4	4.0	2.1
F (hour glass)	0.89	0.94	0.99	
Luminosity/IP <i>L</i> (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

HL-Higgs operation Parameters:

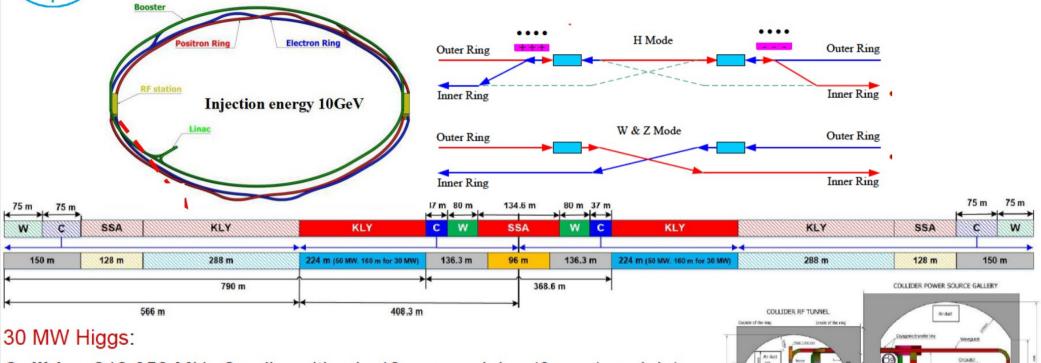
Lifetime (hour)	0.22	1.2	3.2	2.0
F (hour glass)	0.85	0.92	0.98	
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	5.2	14.5	23.6	37.7

SRF prototyping & tests

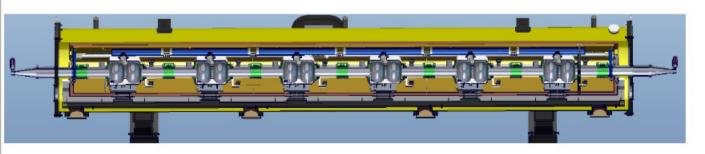


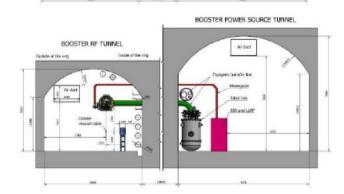
650 MHz 2-cell cavity

650 MHz 5-cell cavity with waveguide HOM coupler



New furnaces for N-doping and infusion study

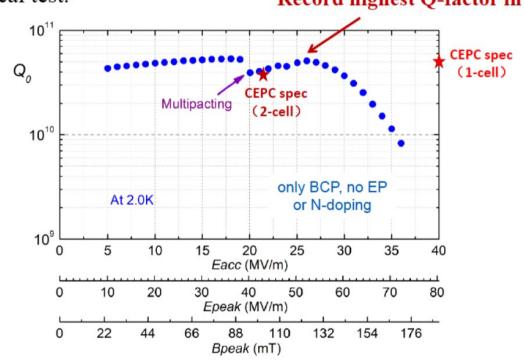

Helmholtz coil & flux gate for high Q research



Collider: 240 650 MHz 2-cell cavities in 40 cryomodules (6 cav./ module).

Booster: 96 1.3 GHz 9-cell cavities in 12 cryomodules (8 cav. / module).

For higher Z lumi, look at 1-cell cavity design.



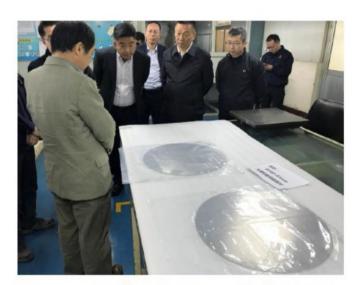
650 MHz 1-cell cavity

Accelerating gradient (Eacc) reach 36.0 MV/m, Q = 5.1E10 @ Eacc = 26 MV/m.

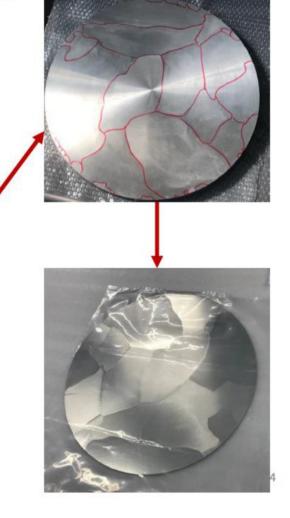
Next, increase the Q and Eace through N-doping, EP, etc. Target: **5E10@42MV/m** for vertical test.

Record highest Q-factor in China

650 MHz 1-cell cavity

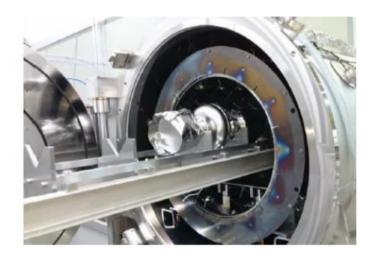

--

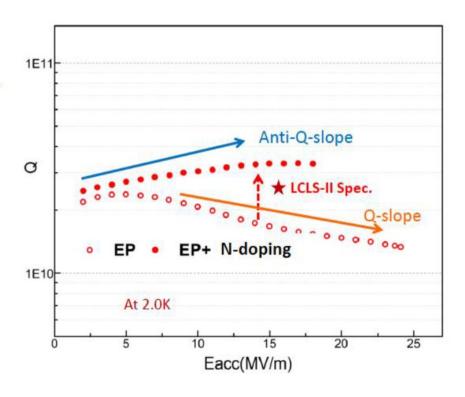
650 MHz 1-cell cavity (large grain)


 Then, OTIC made a new Nb ingot (Φ480mm) for us, which was processed to qualified Nb sheet.

 Four cavities are under fabrication now, which will be tested in the middle 2019. Target of Vertical test: 5E10 @ 42MV/m at 2.0 K.

Large grain Nb sheets made by OTIC





N-doping of 1.3 GHz cavity

- After N-doping, 1.3 GHz 1-cell cavity reached 3.3E10 @ 18MV/m, twice of baseline Q, which exceeded LCLS-II Spec (2.7E10 @ 16MV/m) domestically for the first time. This result is also very exciting for Shanghai hard X-FEL (SHINE), which have a 8-GeV SRF LINAC and adopted N-doping as baseline.
- This work is collaborated with KEK colleagues.

PAPS-SRF infrastructure

- SRF facility construction
 - Civil construction will be finished by end of April, 2019
 - Clean-room and cryogenic system will be ready by the end of 2019
 - Some components are ready for shipment, e.g. furnace, cryomodule for horizontal test, Nb-Cu sputtering system, etc.

1st 650MHz Klystron Manufacturer and Infrastructure Preparation Progress

Z.S. Zhou

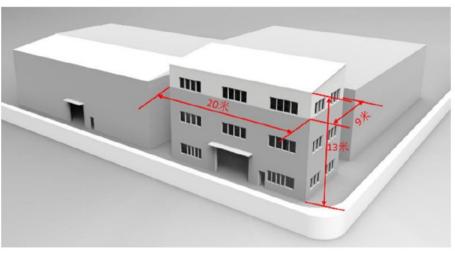
Modulator anode components

Cavities components

Klystron output window

Assembly plant construction

Large size baking furnace commissioning



Klystron R&D

♦1st prototype tube

650MHz/800kW meets CEPC project demands 80% efficiency

Mechanical design and manufacture Plant and infrastructure preparation

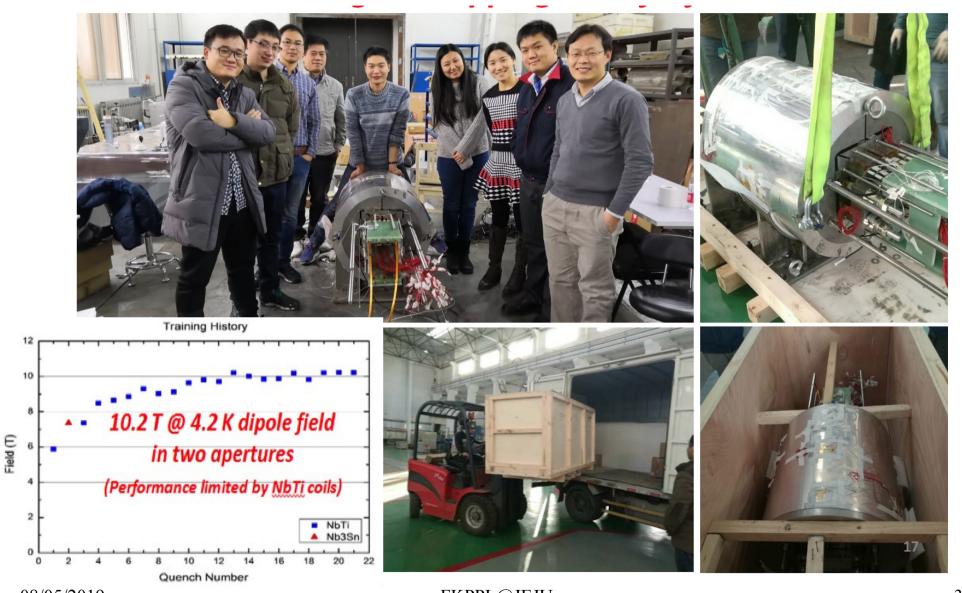
Dec. 29, 2018

Dimension of new building

Jan. 28, 2019 Mar. 3, 2019 High efficiency design

Mar. 27, 2019

Apr. 12, 2019

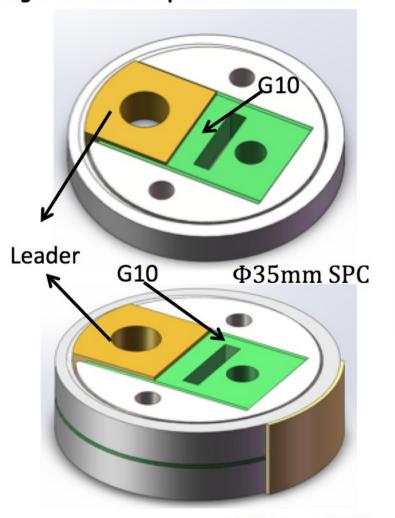

prototype optimization Multi-beam klystron consideration

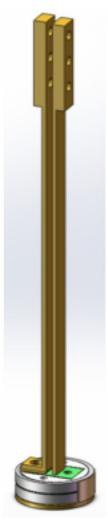
HTC Superconducting Cables

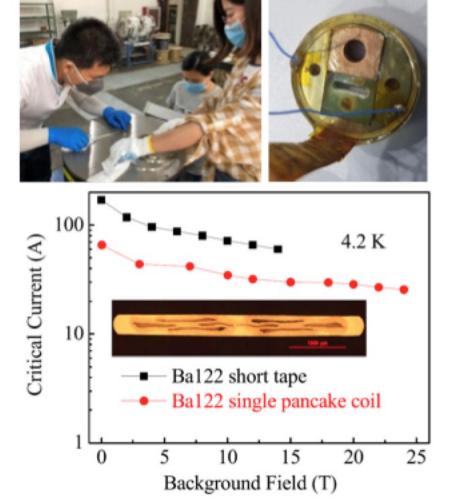
- Huge impact If magnet can be used at ~ 4.5K 20 K
- Fe-based HTC cable
 - Metal, easy to process; Isotropic; Cheap in principle
- Background in CAS
 - World highest Tc Fe-based materials
 - World first ~ 115 m Fe-based SC cables: 12000 A/cm² @ 10 T
- A collaboration on "HTC SC materials": Institute of Physics, USTC, Institute of electric engineering, IHEP, 3 SC cable companies in China
 - Iron based HTC cables
 - ReBCO & Bi-2212
 - Goal: ~ 3-5 \$ /kA·m
 - Current density: x 10
 - Cost/m: ÷10

Dipole Prototype: B = 10.2T @ 4.2K

08/05/2019 FKPPL@JEJU 32




R&D of High Field Dipole Magnets



IBS solenoid for testing at 24T

Single and double pancake IBS coils

D. Wang et al 2019 Supercond. Sci. Technol. 32 04LT01

Ф35mm DPC

Collaboration with industry

The CEPC Industrial Promotion Consortium (CICP) is established in Nov 2017. More than 50 companies joined CICP, with expertise on superconductor, superconducting cavities, cryogenics, vacuum, klystron, electronics, power supply, civil engineering, precise machinery, etc. The CIPC serves as a communication forum for the industrial and the HEP community.

Civil Engineering & Site Selection

Factors affecting site selection:

1. Social factors:

National planning, Regional economic conditions, Cultural environment, Immigration, Environmental protection.

- 2. Natural conditions and engineering factors: Climate, Traffic, Topographical geology, Engineering layout, Construction Conditions, Engineering investment.
- 3. Operating factor:

Water supply, power supply, operating costs

In China, there are many sites that meet the construction conditions.

International Science City

Overall Scale: 3.3km² of construction area for short-term use & 6.7km² for future use.

Summary

- CEPC, a productive and clean Higgs/W/Z factory,
 - Boost the Higgs/EW precision by ~ 10 times w.r.t HL-LHC/current boundary
 - Huge potential on QCD, Flavor, etc
 - Surprises: seeking for direct evidence of NP & deviations
- CDR released
 - Accelerator baseline secures high productivity for Higgs, Z and W bosons.
 - Detector baseline fulfills the requirements: clear physics objects + Higgs signal
 - Alternative designs, New ideas are always welcome
- Key technology civil development:
 - Towards the TDR & significant progresses & link to industrial
- Giving the importance of electron positron Higgs factory, we hope at least one of them (ILC, CLIC, CEPC, FCC) can be realized. We fully support the global studies, even if is not build in China

Significant Progress are made – challenges & topics everywhere Your ideas and participations are more than welcome!

Backup

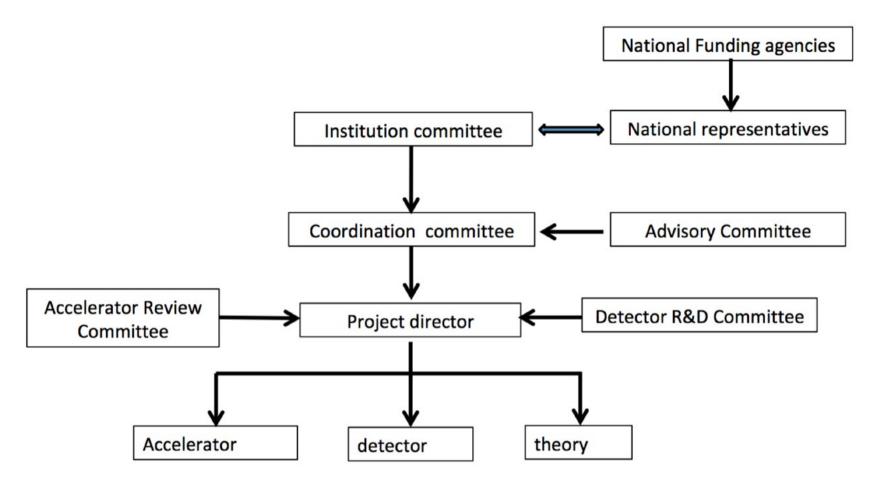
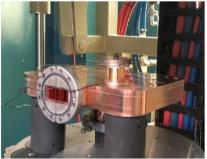
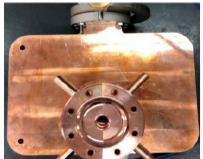


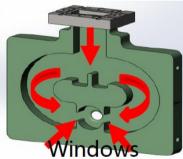
Figure 9, The planned international organization from 2019 till the construction

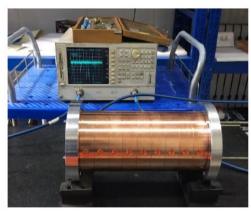
In this structure, all the building blocks will integrate the international participation. The Institution Committee writes the bylaws and makes major decisions on organizational issues. The national representatives interface with the National Funding Agencies and the corresponding institutions are represented in the Institution Committee. Supported by the Accelerator Review Committee and the Detector R&D Committee, the Project director is responsible for the coordination of studies at each group.




R&D activities on Linac

S-band accelerating structure design


- Mechanical design
 - Inner water-cooling has been adopted. 8 pipes are around the cavity.
 - Compact coupler arrangements. The splitter is milling together with the coupling cavity.

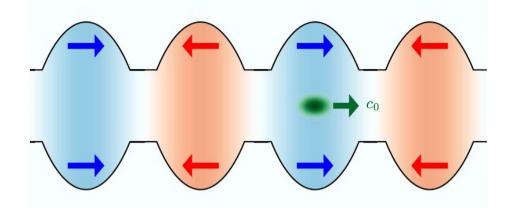


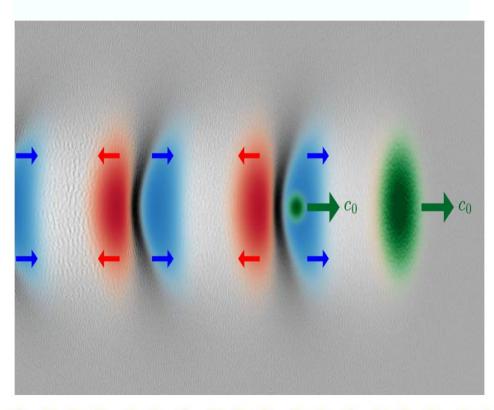
R&D activities on Linac

High power test bench @ IHEP

- The accelerating structure have carried from laboratory to test bench and finished assembling
- Vacuum leak detection is under way

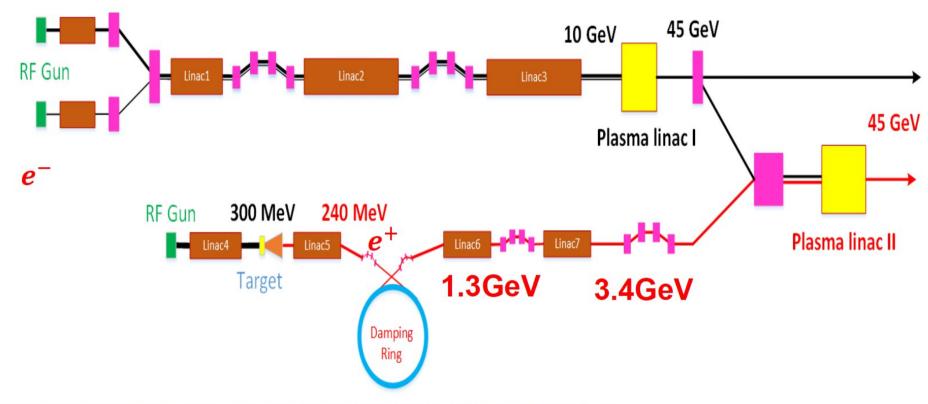
 Two faraday cups are in upstream and downstream of the structure respectively




PWFA Linac replacement

RF Cavity

20-40 MV/m


Plasma wakefield

10 – 1000 GV/m

CEPC PWFA Linac

- Driver/trailer beam generation through Photo-injector
- HTR PWFA with good stability (single stage TR=3-4, Cascaded stage 6-12, high efficiency)
- Positron generation and acceleration in an electron beam driven PWFA using hollow plasma channel (TR=1)