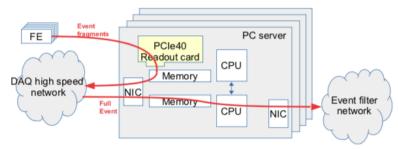
Development of a high-speed detector readout system

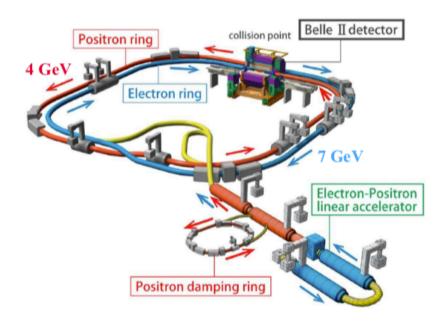
Introduction

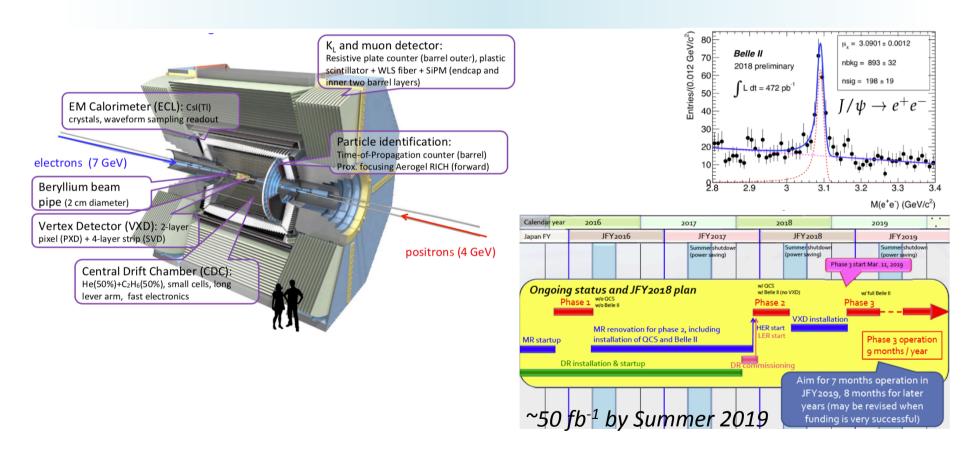

 Project between LAL and KEK to develop a system to readout a particle physics detector at high speed

Initial proposal was submitted last year (funded).

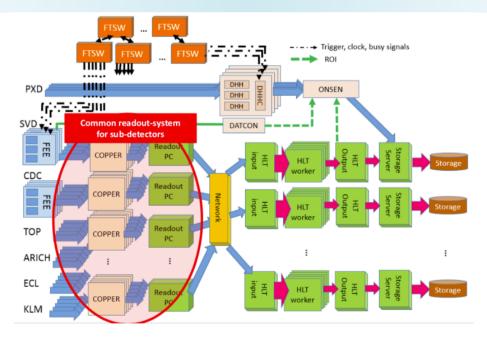
- Implemented in the context of the upgrade of the Belle II DAQ
- Chose to use as hardware the PCle40 board developed for the LHCb Upgrade by IN2P3/CPPM (cf. L. Vacavant talk)
- Project consists in developing the necessary firmware

New directions in HEP DAQ


- Huge data rates are mandatory in particle physics experiments:
 - search for rare processes or precision measurements.
- Sophisticated trigger systems are required to digest these data:
 - Full detector information used
- Necessity to couple tightly data acquisition & computing resources for real time processing and high speed network
- Development of dedicated hardware, such as the PCIe40 board, which is collecting a large amount of data from optical input links, and hosted in PC servers to have access to CPU and network

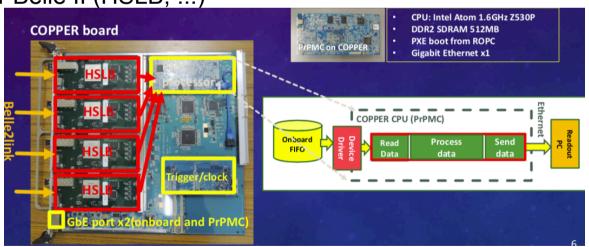

Belle II experiment

- Indirect search for New Physics in heavy flavour decays (B, D, au) via precision measurements
- At SuperKEKB accelerator:
 - Designed luminosity: 40 times KEKB
 - Integrated luminosity of 50 ab⁻¹ in 10 years (1 ab⁻¹ for Belle)



Belle II detector

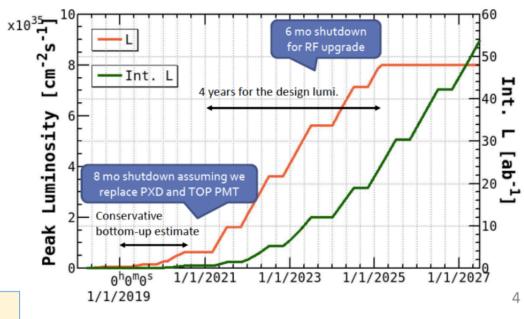
Belle II Current Readout System


- Common readout for 6 of the 7 sub-detectors
- Formatting, data-checking and partial event-building done in DAQ stage

COPPER boards

- COPPER is the common readout board for current Belle II operation:
 - Versatile board developed by KEK: same functionality as in Belle

• Can be equipped with I/O and processor cards: new daughter boards are used for Belle II (HSLB, ...)



DAQ upgrade for Belle II

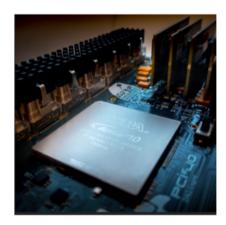
- Maintenance difficulty during the foreseen lifetime of the Belle II experiment
 - 4 different types of boards (COPPER, TTRX, PrPMC, HSLB) to take care of.
 - The number of spare components which are not available anymore is increasing.
- Limitation in the improvement of performance of DAQ
 - Bottlenecks of the current readout system:
 - CPU usage
 - About 60% of the COPPER CPU is used at "30kHz L1 trigger rate with 1kB event size/COPPER" (i.e. the Belle II DAQ target value).
 - Data transfer
 - · 1Gbit Ethernet link per COPPER board.
 - We need to have a better readout system when:
 - Luminosity of SuperKEKB exceeds expectations.
 - Lower thresholds of L1 trigger required to improve the efficiency of low multiplicity events.

Upgrade schedule

- Belle II collaboration is now considering to replace the current readout system in time for when accelerator achieves target luminosity.
- The DAQ replacement will be performed using winter accelerator shutdowns.

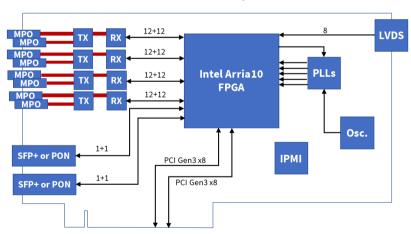
2018-2019 Development and launch mass production

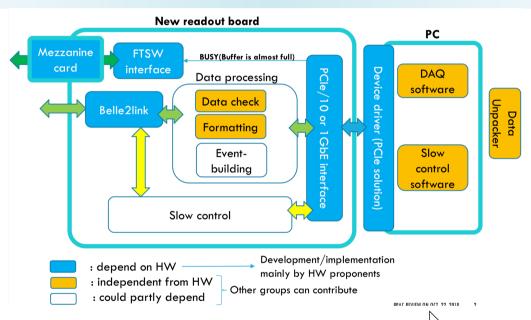
~2020 Installation


Requirements for Belle II DAQ upgrade

- Larger number of input channels per board:
 - From 4 to ~40 per board
 - Total system fits in ~20 boards
- Higher output throughput
 - Upgrade network to 10 GbEthernet
 - Data transfer via PCI express
- Larger buffers
 - Absorb fluctuations of throughput in computer memory
- Smaller number of board types:
 - All functionalities will be contained in a single board instead of several ones
- Keep the current interfaces to other subsystem:
 - Format of optical links from Front-End to DAQ identical (Belle2link)
 - Data format to software trigger identical
 - Keep timing system identical

PCle40 board


- Board developed for the LHCb Upgrade Phase I (Trigger-less readout at 40 MHz) by CPPM (Marseille) and CERN, used also by ALICE and Mu3E experiments
- Versatile hardware: possibility to use it for the Belle II DAQ upgrade is being evaluated by LAL-KEK collaboration: hardware fulfills all requirements, but firmware has to be developed



PCle40 board

- Main features
 - PCI express board (hosted in server) with a large ALTERA ARRIA10 FPGA
 - 48x2 optical links running at 10 Gbits/s on mini-pods with MPO 12-fiber connectors
 - 2 PCIe Gen3 x8 interfaces to host server, tested at 112 Gbits/s

Firmware development

- Firmware needs to be developed to adapt PCIe40 to Belle II Close collaboration mandatory.
- Common development between KEK and LAL groups, which both have large expertise in electronics development and operation of HEP detector DAQ.

Teams and activities

KEK	LAL
Satoru Yamada	Daniel Charlet
Ryosuke Itoh	Christophe Beigbeder
Mikihiko Nakao	Eric Jules
Qidong Zhou	Emi Kou
	François Le Diberder
	Eric Plaige
	Patrick Robbe
	Monique Taurigna

Request:

KEK: 1500k¥

Granted:

IN2P3:30k€

- Regular video meetings between the development teams to share work
- Visit of Nakao-san to LAL in December 2018 to implement timing interface in PCIe40 board
- Several important milestones achieved together by the two teams: readout of Belle II Front-End electronics (CDC, ARICH) by the PCIe40 board and interface to the timing system.
- Next meeting in KEK, mid June 2019 (set-up of a demonstrator on site).

Conclusions

- Collaboration between KEK and LAL established in 2018 to evaluate solutions for the upgrade of the Belle II readout system.
- A solution based on the PCle40 board (CPPM/LHCb) fulfills all requirements.
- Development of firmware is needed, realized also in collaboration between the two groups.
- The exchange of expertise allowed to obtain already important results in adapting the PCle40 board for the Belle II case.
- Will be ready for October 2019: selection decision