Study of light cluster production in intermediate energetic heavy-RI collision at RIBF

Masanori KANEKO for the SπRIT collaboration Department of Physics, Kyoto university

Nusym2018@Busan, 10-13 Sept. 2018

GRADUATE SCHOOL OF SCHOOL

Contents of this talk

Physics motivation

- Asymmetric nuclear EOS, symmetry energy
- Heavy-ion collision observables, pion and cluster
- Experiment
 - 270 MeV/nucleon Sn-Sn isotopic collisions at RIKEN-RIBF

Current status of hydrogen isotopes analysis

- Reaction system difference on the multiplicity and rapidity
- Summary

Nusym2018@Busan, 10-13 Sept. 2018

Motivation: nuclear equation of state

= Relationship between thermodynamic variables of the nuclear matter

$$\mathcal{E}(\rho, \delta) = \mathcal{E}(\rho, \delta \sim 0) + \mathcal{S}(\rho)\delta^2$$

 $\rho = \rho_n + \rho_p, \ \delta = (\rho_n - \rho_p)/\rho$

- Symmetry energy: S(ρ)
 - Associated with a lot of phenomena at asymmetric matter.
 - Nuclear phys.: neutron skin/halo, exotic resonance state
 - Neutron star: mass-radius relation, BNS merger(GW170817)
 - At below saturation density, constrained by various probes.
- Poor constraint at high density.

High densities: information of neutron star interior.

Normalized baryon density : ρ/ρ_0

Heavy-ion collision(HIC) is possible method to produce a dense matter on the earth.

Measured reaction system set: Sn isotope collisions

Experiment@RIKEN-RIBF in Spring of 2016

Primary beam	Secondary	Target	E _{beam} [MeV/n]	$\delta_{system} = (N-Z)/A$
124Xe	108Sn	112Sn	270 $\rightarrow \sim 2\rho_0$ matter is produced.	0.09
	112Sn	124Sn		0.15
238U	132Sn	124Sn		0.22
	124Sn	112Sn		0.15

Systems with the same charge: Z=50+50 and wide range of asymmetry Cancel out coulomb effect and reduce uncertainties like detector efficiency to strongly focus on the symmetry energy.

Heavy-ion collision observables and cluster

- Toward extraction of symmetry energy...
 - Charged pion observables are predicted as good probes.
 - BUT pion production is not so simple, influenced by dense in-medium effects in HIC.
- In order to understand HIC correctly...
 - There are available multi-observables.
 - AMD calculation w./w.o. cluster correlation suggests that treatment of cluster in HIC influences pion ratio. Cluster production affects the p-n dynamics in HIC.
 - Cluster property should be also well-known to understand pion observables.
 - Section 2.1 Sec

Hydrogen isotopes are good benchmark to discuss the cluster property in HIC.

5

Experimental setup @ RIBF - SAMURAI spectrometer

Particle identification in TPC, hydrogen isotope selection

Nusym2018@Busan, 10-13 Sept. 2018

Multiplicity of hydrogen isotope for each system

Neutron-rich system produced more triton, less proton.

- Protons are more likely to be caught by surrounding neutrons in n-rich environment.
- How about deuteron ?

Nusym2018@Busan, 10-13 Sept. 2018

• For d production, $p+n \rightarrow d$ and $d+n \rightarrow t$ (and $d+p \rightarrow 3He$) competes, which might result in similar for two reaction systems.

Rapidity distributions in center of mass frame. (No correction)

- \blacksquare Rapidity is normalized by projectile rapidity. \rightarrow beam rapidity for 1, target rapidity for -1.
- The number difference on proton and triton is seen as same as multiplicity spectra.
- Triton spectra difference is considered to reflect the projectile-target asymmetry.

```
Nusym2018@Busan, 10-13 Sept. 2018
```


Rapidity of hydrogen isotope for each system

Rapidity spectrum system ratio

- 132Sn124Sn system has n-rich projectile
 - \rightarrow more tritons are expected in forward rapidity region.

108Sn112Sn system has n-rich target

- \rightarrow more tritons in target rapidity region.
- Spectrum ratio shows a trend which is consistent with a simple expectation above.
- Triton has a positive slope w.r.t. rapidity, and an inverse slope is seen on proton.
- Deuteron spectrum shows ~1 w.r.t rapidity.

Rapidity spectra look to be informative how much cluster will be produced for different kind of reaction system.

Nusym2018@Busan, 10-13 Sepr. LUIO

Summary & future prospect

- We have measured Sn-Sn collision in 270 MeV/nucleon at RIBF.
- Analysis algorithm is under development, a lot of studies are ongoing.
- Raw multiplicity and rapidity distributions for hydrogen isotopes in n-rich system and n-deficient system are presented.
 - System dependence and projectile-target asymmetry effect seems to be observed.

Next step

- Stopping and/or temperature using the rapidity, cluster property using the multiplicity (d/p, t/p etc.)
- Efficiency studies are necessary for further understanding on the spectra. He isotopes are also measured in SpiRIT-TPC, which will be available.

$S\pi RIT$ collaboration

MSU/NSCL

- C. Anderson
- Y. Ayyad
- J. Barney
- G. Cerizza
- J. Estee
- W. G. Lynch*
- J. Manfredi
- P. Morfouace
- C. Santamaria
- H. Setiawan
- R. Shane
- S. Tangwancharoen
- G. Jhang
- C. Y. Tsang
- M. B. Tsang*

Syoto University

- M. Kaneko
- T. Murakami*
- N. Nakatsuka

Tohoku University

T. Kobayashi

- H. Baba
- N. Fukuda
- T. Ichihara
- N. Inabe
- T. Isobe*
- D. Kameda
- T. Kubo
- Y. Nakai
- M. Kurata-Nishimura
- S. Nishimura
- H. Otsu
- H. Sato
- H. Sakurai
- H. Shimizu
- H. Suzuki
- F. Takeda
- K. Yoneda

Korea University

- B. Hong
- J. W. Lee

RISP, Korea

- H. S. Lee
- Y. Kim
- Y. J. Kim

INP, Poland

- K. Pelczar
- J. Lukasik
- P. Pawlowski
- P. Lasko

TITech.

- Y. Kondo
- T. Nakamura

CEA 🌑

E. Pollacco

Tsinghua University

- R. Wang
- Z. Xiao
- Z. Yan

Rikkyo University

- K. leki
- K. Kurita
- J. Murata

Texas A&M University

- M. Chapman
- A. McIntosh
- S. Yennello

*Spokesperson

Thank you for your attention !!

backup

Total hydrogen multiplicity for different system

132Sn124Sn yields a little bit less. → Heavy cluster is produced more than 108Sn112Sn?

H rapidity for different system

No weight was applied. → Proton rapidity could dominate this spectrum.

Trigger efficiency vs. impact parameter

- Trigger efficiency: how much events will be triggered by the SpiRIT trigger system?
- ex) UrQMD case
- Mean of b ~ 6 fm, width ~ 4 fm.
- ~ 40 % of events will be triggered in total.
- On mid-peripheral region, models look to have a discrepancy.
- On the central collision, almost all of events can be triggered. On the other hand, there seems to be a model dependency how much peripheral events are included in our data.

Spectrum ratio: AMD w./w.o. cluster-correlation

Detector & impact parameter acceptance is NOT considered.

- with cluster-cluster correlation
- : without correlation
- Proton
- Deuteron
- Triton
- Proton spectrum ratio:

→ With cluster-cluster correlation is further from 1 than without correlation.

- Deuteron:
- \rightarrow With correlation is closer to 1 than without correlation.

Calculation with cluster correlation looks to favor the preliminary result.

