

Multi-PMTs for the Hyper-Kamiokande detectors

<u>Claudio Giganti,</u> Jacques Dumarchez, Mathieu Guigue, Boris Popov (LPNHE/IN2<mark>P</mark>3)

> Sara Bolognesi, Marco Zito (IRFU/CEA)

Olivier Drapier, Margh<mark>erita</mark> Buizza Avanzini (LLR/IN2P3) <u>Benjamin Quilain</u>, Mark Hartz (Kavli IPMU, The University of Tokyo)

Masahiro Kuze, Shota Izumiyama, Isao Sashima (Tokyo Institute of Technology)

Masaki Ishitsuka, Nao Izumi, Michitaka Inomoto (Tokyo University of Science)

The Hyper-Kamiokande experiment

- Next generation of neutrino observatory in Japan \rightarrow construction 2020-26
 - \rightarrow A 260 kton water Cherenkov detector \rightarrow <u>FV mass ~ 8 x SK.</u>

-150

-50

50

100

150

 δ_{CP} [degree]

• Limited by E-resolution.

GUT and proton decay

2. Probe Grand Unified Theories at a new scale through proton decay.

- HK will be able to probe Minimal SUSY-SU(5) & SUSY-SO(10) almost completely with the world highest sensitivity !
- This analysis is essentially limited / statistics \rightarrow Crucial to increase FV.

Supernovae neutrinos

- <u>3. Probe supernovae v: 99 % of SN energy $\rightarrow v$.</u>
 - But direct v detection very rare.
 - HK sensitive also extra-galactic SNv from Andromeda !
 - <u>Pointing directionality is crucial.</u>

- SN-relic neutrino → new constraints
 on cosmic star history → May be first detected in SK-Gd.
 - \rightarrow The spectrum determined by HK : Low energy \leftrightarrow Probe older stars

2045

Year

Solar neutrinos : upturn

<u>4. Probe solar v</u>: SK/SNO found a high matter effect in the Sun \leftrightarrow Solar upturn shifted to lower energies

- Displacement of the upturn can be explained by :
 - Statistical fluctuation ?
 - Light sterile neutrino ?
 - Non Standard Interaction in the dense Sun?
- <u>Very sensitive to HK energy threshold</u> : <u>Can we lower E-threshold</u> ?

Motivations for mPMT modules in Hyper-K

- To reach these goals, we rely mainly on HQE 50cm PMTs.
- Can multi-PMTs enhance HK physics as a complement of 50cm PMTs ?
- <u>Multi-PMT :</u> 19 PMTs of 8cm PMTs.
- <u>Smaller size</u> : Better reconstruction near wall
 → Increase FV e.g. for CPV or p-decay ?
- <u>2 x better timing resolution</u>: \uparrow vertex resolution \rightarrow enhanced energy resolution \rightarrow Decrease systematics on δ_{CP} ?
 - \rightarrow Better directionality for SN pointing ?
- <u>Aim for dark rate ≤ 100Hz</u>: S/N ~ 2 x 20"
 → Probe lower energies e.g solar upturn ?

Impact of mPMTs at high energy

• <u>2 hypotheses</u> : 20 % 50cm PMT + 5 % multi-PMT or 10 % mPMT

Today, focus on 5 % case

• Simplified fitter indicate possible improvement with mPMT especially for events close to wall

 \rightarrow +25 % statistics in e-sample for a mis-ID rate of 1 %.

• <u>Our 1st goal</u> : Develop a more complete reconstruction at high energy to validate&improve these first promising results.

Impact on low energy

- Improved vertex resolution, especially near the edges of the detector $\rightarrow \uparrow$ fiducial volume +10 %.
 - \rightarrow May \downarrow systematic uncertainties.
- \downarrow energy theshold $4.5 \rightarrow 3.5 \text{ MeV}$

 \rightarrow May be able to probe the solar upturn with a 5 σ sensitivity.

Impact on HK intermediate detector

- Multi-PMT are also the primary candidates for the HK IWCD
 - \rightarrow Located ~1-2km away from JPARC beamline.
 - \rightarrow Much smaller than HK \rightarrow Reconstruction near the wall is crucial !

- Improved vertex resolution
 - \rightarrow Larger FV w/ less systematics.
- Improved PID \rightarrow Reduced systematics for $(v_e / v_\mu) / (\overline{v}_e / \overline{v}_\mu)$.

Tests of individual 3" PMTs

- Extensive tests of the 3" PMTs constituting mPMTs @U. Tokyo.
- <u>2 test benches allowing to measure the :</u>
 - 1. PMT time and charge response with uniform light source
 - 2. Variation of this response wrt position and angle w/ photocathode

The individual 3" PMT has been fully characterized (except for DR).
 → The next step is to test the whole multi-PMT module.

Enhance HK physics with mPMT

- Our project : Enhance HyperK physics capabilities with multi-PMT.
 → Joint development of the reconstruction to produce the physics sensitivities with mPMT.
 - \rightarrow First test of the whole mPMT in-situ.

<u>1. Why ?</u>

- World first test of these modules in water \rightarrow 1st milestone towards their use in HK/E61.
 - \rightarrow Compare of 2 prototypes & electronics.
 - \rightarrow 1st measurements of 3'' w/ physics data.
 - \rightarrow Crucial to optimize the module & reflector.
- 1st dark rate measurements in-situ.
 → Crucial to determine the LE possibilities & study DR reduction (positive HV, HA-coating...)
- Development of the DAQ for HyperK.

 $\frac{\text{Canadian design :}}{\text{tuned for HK \& flash}}$ $\text{ADC} \rightarrow \text{Waveforms.}$

<u>Italian design :</u> half sphere & integrated charged / timing.

Test the assembled mPMT in water

12

Conclusions and plans

- <u>The multi-PMTs allows to enhance HK physics capabilities</u> in both low (solar) and high energy (CPV, p-decay etc) sectors.
 + are the <u>primary candidates for HK intermediate detector.</u>
- Propose a new collaboration between LPNHE/LLR/CEA & University of Tokyo/TIT/TUS in order to :
 - Develop simulation & reconstruction tools at low & high energy
 → New sensitivity studies & direct work for final HK softwares.
 - Proceed to the very first test of the mPMT in water (2019-2020)
 - \rightarrow 1st milestone towards their use in HK.
 - \rightarrow Select mPMT & electronics design.
 - \rightarrow Development for the HK future DAQ.
- After these successful tests → Plan to pursue them at a more ambitious scale → Install water Cherenkov w/ mPMTs @CERN in 2021.

Additional slides

I. Low energy

Low energy impact

- New low energy fitter to properly compare the configurations.
- Performances are increased compared to BONSAI.

• Vertex resolution clearly improved with mPMTs.

New fitter

• <u>Maximize</u>: L (vertex at t, \widetilde{X})= $\prod_{i=hits} P(time - tof - t_{vertex} | vertex at t, <math>\widetilde{X}$).

• <u>Principles</u> :

- 1. A coarse GRID search in the tank using 3m / 12 ns steps.
- A minimization using MINUIT in
 a 3m / 12ns radius sphere around the candidate.

→ Details provided in last week software meeting + back-up slides

Results for 10 MeV electrons

 Results same as BONSAI ! → Show both that <u>new algorithm works</u> well, and that <u>both algorithms uses well all information of time PDF</u> (otherwise, unlikely to find exactly same result)

mPMT directionality

• The mPMT hit should point in average towards the true vertex (almost no dark rate hits for 3" PMTs)

 \rightarrow Help to discriminate candidate vertices from B&L PMTs that are degenerate due to dark rate.

mPMT directionality

- It dominantly affect the PMTs on the edges of the mPMT.
- Basically 3 groups of PMTs.
- <u>Note</u> : there is also a little dependency within these 3 groups \rightarrow I put it in the code but did not used it for today (processing time is long!)

mPMT directionality

- Efficiency should fall > 90°, apart from scattering / reflection.
 → ≠ between groups > 90° due to non total cover of vertices in FV.
- The more on the edge, the more the efficiency can fall as light can be screened by other PMTs on the same module.

Impact of mPMT on FV

- For 10 Mev electrons, ~10cm difference in vertex resolution in average.
 → Difference rise to 32 cm at 100 cm from the wall.
- Clear impact of directionality near the wall → Expected, but confirm implementation generally works.

Increasing the Fiducial Volume

Increasing the Fiducial Volume

- FV in SK for LE is defined as dWall $\geq 2m$. How many events out of FV can migrate ? 150 100 50 10 8 12 14 E_v (MeV)
- \geq 5 MeV : Increase of FV by 30-40cm \rightarrow 3-4 % gain in statistics.
- But background comes $\leq 5 \text{ MeV} \rightarrow \text{Increase of 90 cm at 3 and 4MeV.}$ $\rightarrow 10 \%$ increase in statistics in total.

II. High energy

Event display for 20 % B&L + 5k mPMT

6

• Can we improve PID and Fiducial volume using multi-PMT ?

Developing a simplified PID

• PID based on the charge profile

• Region has been chosen to contain the peaks of muon / electron. It can be extended over 65° region without damaging the PID.

Separation power of the PID

Separation power of the PID

• Build an efficiency / purity curve based on the PID.

- mPMT improves performances, main impact close to the wall.
- At 1 % µ purity, efficiency is 48 % for B&L-only and 60 % for hybrid → Increase statistics by 25 % through FV enlargement.