#### NuSYM 2018

# Gravitational waves and Tidal deformability of Neutron Stars

Young-Min Kim (UNIST)

in collaboration with

Kyujin Kwak (UNIST), Yeunhwan Lim (Texas A&M), Chang Ho Hyun

(Daegu Univ.), and Chang-Hwan Lee (Pusan Nat'l Univ.)

#### First detection of GW from a BNS



.10

#### Parameter Estimation (I)



Abbott et al. (LSC and Virgo), arxiv:1805.11579

#### Parameter Estimation (2)



Abbott et al. (LSC and Virgo), arxiv:1805.11579

 $D_L \sim 40 \text{ Mpc}$ (consistent with D of NGC4993)



#### Neutron Star of Known Mass



GW170817: BNS MI: 1.36~1.60 Mo (1.36~2.26) M2: 1.17~1.36 Mo (0.86~1.36)

J. Lattimer, Annu.Rev.Nucl.Part.Sci.62,485(2012) and <u>https://stellarcollapse.org</u> by C. Ott

### A new constraint by GW Obs. (1)



Abbott et al. (LSC and Virgo), arxiv:1805.11581 (PRL accepted)

 $\rho_{nuc} = 2.8 \times 10^{14} \text{ g/cm}^3$ 

#### A new constraint by GW Obs. (2)



Abbott et al. (LSC and Virgo), arxiv:1805.11581 (PRL accepted)

### Response of NS to GW during inspiral



#### GW waveform in Frequency Domain

$$\begin{split} \tilde{h}_{T}(f) &= \mathcal{A}f^{-7/6}e^{i\Psi_{T}}(f) & \text{M. Favata, PRL.112.101101 (2014)} \\ \Psi_{T}(f) &= \varphi_{c} + 2\pi f t_{c} + \frac{3}{128\eta v^{5}} (\Delta \Psi_{3.5PN}^{pp} \\ &+ \Delta \Psi_{3PN}^{spin} + \Delta \Psi_{2PN}^{ecc.} + (\Delta \Psi_{6PN}^{tidal} + \Delta \Psi_{6PN}^{tm}), \quad (1) \\ \Delta \Psi_{6PN}^{tidal} &= \left( -\frac{39}{2} \tilde{\Lambda} v^{10} \right) v^{12} \left( \frac{6595}{364} \delta \tilde{\Lambda} - \frac{3115}{64} \tilde{\Lambda} \right), \quad (4) \quad v = (\pi f M)^{1/3} \\ \tilde{\Lambda} &= \frac{16}{13} \frac{(m_{1} + 12m_{2})m_{1}^{4}\Lambda_{1} + (m_{2} + 12m_{1})m_{2}^{4}\Lambda_{2}}{(m_{1} + m_{2})^{5}} \\ \Lambda &= \lambda/M^{5} \rightarrow G \left( \frac{c^{2}}{GM} \right)^{5} \lambda = \frac{2}{3} \left( \frac{Rc^{2}}{GM} \right)^{5} k_{2} \end{split}$$

#### Tidal Love number, k2

$$\frac{dH}{dr} = \beta \qquad \frac{d\beta}{dr} = 2\left(1 - 2\frac{M}{r}\right)^{-1} \times H\left\{-2\pi\left[5\epsilon + 9P + (d\epsilon/dP)(\epsilon+P)\right] + \frac{3}{r^2} + 2\left(1 - 2\frac{M}{r}\right)^{-1}\left(\frac{M}{r^2} + 4\pi rP\right)^2\right\} + \frac{2\beta}{r}\left(1 - 2\frac{M}{r}\right)^{-1}\left\{-1 + \frac{M}{r} + 2\pi r^2(\epsilon-P)\right\}$$

#### TOV

Compositions of a NS  $\frac{dP}{dr} = -\frac{GM\rho}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi P r^3}{Mc^2}\right) \left(1 - \frac{2GM}{rc^2}\right)$ F. Weber 2005 traditional neutron star N+e N+e+n  $\frac{dM}{dr} = 4\pi r^2 \left(\frac{\epsilon}{c^2}\right)$ n.p.e. µ hyperor neutron star with Fe

k2 ( $\lambda$ , $\Lambda$ ) depends on NS EoS !!



### TOV Eq. vs. Diff. Eq. for Tidal deformability

a spherical symmetric star in hydrostatic equilibrium

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \qquad ds_0^2 = g_{\alpha\beta}^{(0)} dx^{\alpha} dx^{\beta} \\ = -e^{\nu(r)} dt^2 + e^{\lambda(r)} dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2).$$

$$T_{\alpha\beta} = (\rho + p) u_{\alpha} u_{\beta} + p g_{\alpha\beta}^{(0)},$$

$$TOV \text{ eq.}$$

$$\frac{dP}{dr} = -\frac{GM\rho}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi P r^3}{M c^2}\right) \left(1 - \frac{2GM}{rc^2}\right)$$

$$\frac{dM}{dr} = 4\pi r^2 \left(\frac{\epsilon}{c^2}\right) \qquad Mass \& \text{ Radius}$$

### TOV Eq. vs. Diff. Eq. for Tidal deformability

#### static linearized perturbations due to an external tidal field

$$\delta G_{\mu\nu} = 8\pi \delta T_{\mu\nu}$$

$$g_{\alpha\beta} = g_{\alpha\beta}^{(0)} + h_{\alpha\beta},$$
T. Hinderer (2008), K. Thorne and A.  
Campolattaro (1967)  

$$h_{\alpha\beta} =$$

$$\operatorname{diag}[-e^{\nu(r)}H_0(r), e^{\lambda(r)}H_2(r), r^2K(r), r^2\sin^2\theta K(r)]Y_{2m}(\theta, \varphi).$$

$$\delta T_0^0 = -\delta\rho = -(dp/d\rho)^{-1}\delta p \qquad \delta T_i^i = \delta p$$

$$H'' + H' \left\{ \frac{2}{r} + e^{\lambda} \left[ \frac{2m(r)}{r^2} + 4\pi r(p-\rho) \right] \right\} + H \left[ -\frac{6e^{\lambda}}{r^2} + 4\pi e^{\lambda} \left( 5\rho + 9p + \frac{\rho+p}{dp/d\rho} \right) - \nu'^2 \right] = 0,$$
 k2 or  $\lambda$   
NuSYM 2018 @ 2018.09.10

#### Electric-type tidal coefficients

Damour and Nagar , PRD 80, 084035 (2009)  
Electric-type tidal coefficients  

$$C_{1} = \frac{2}{r} + \frac{1}{2}(\nu' - \lambda') = \frac{2}{r} + e^{\lambda} \Big[ \frac{2m}{r^{2}} + 4\pi r(p - e) \Big].$$
(28)  

$$G\mu_{\ell} = \frac{a_{\ell}}{(2\ell - 1)!!} \Big( \frac{GM}{c_{0}^{2}} \Big)^{2\ell+1} = \frac{2k_{\ell}}{(2\ell - 1)!!} R^{2\ell+1}.$$
(48)  

$$C_{0} = e^{\lambda} \Big[ -\frac{\ell(\ell + 1)}{r^{2}} + 4\pi(e + p) \frac{de}{dp} + 4\pi(e + p) \Big] + \nu'' + (\nu')^{2} + \frac{1}{2r}(2 - r\nu')(3\nu' + \lambda')$$

$$= e^{\lambda} \Big[ -\frac{\ell(\ell + 1)}{r^{2}} + 4\pi(e + p) \frac{de}{dp} + 4\pi(5e + 9p) \Big]$$
we calculated the case, I=2  

$$C_{0} = e^{\lambda} \Big[ -\frac{\ell(\ell + 1)}{r^{2}} + 4\pi(e + p) \frac{de}{dp} + 4\pi(5e + 9p) \Big] - (\nu')^{2},$$
(29)  

$$k_{2} = \frac{8}{5}(1 - 2c)^{2}c^{5}[2c(y - 1) - y + 2] \Big[ 2c(4(y + 1)c^{4} + (6y - 4)c^{3} + (26 - 22y)c^{2} + 3(5y - 8)c - 3y + 6) - 3(1 - 2c)^{2}(2c(y - 1) - y + 2) \log(\frac{1}{1 - 2c}) \Big]^{-1},$$
(50)  

$$\mu_{\ell} = \frac{r!H'(r)}{H(r)} |_{r=\ell} \frac{r!H'(r)}{H(r)} |_{r$$

#### Tidal deformability of a NS



Kim et al., New Physics: Sae Mulli (2018)

- GW170817 Abbott et al. (LSC and Virgo), arxiv:1805.11579 - Mchirp = 1.188 M⊙
- low spin prior :  $\Lambda = 300^{+500}_{-190}$  (symmetric) /  $300^{+420}_{-230}$  (HPD)
- high spin prior :  $\Lambda = 0 \sim 630$

#### Tidal deformability of a NS



Kim et al., New Physics: Sae Mulli (2018)

GW170817 - Abbott et al. (LSC and Virgo), arxiv:1805.11579 - Mchirp = 1.188 M.

- low spin prior :  $\Lambda = 300^{+500}_{-190}$  (symmetric) /  $300^{+420}_{-230}$  (HPD)
- high spin prior :  $\Lambda = 0 \sim 630$

#### Higher Tidal coefficients



$$x \equiv (M\omega)^{2/3}$$
  

$$\Delta \Psi_2^{tidal} \sim \lambda_2 \ x^{5/2}$$
  

$$\Delta \Psi_3^{tidal} \sim \lambda_3 \ x^{9/2}$$
  

$$|\Delta \Psi_3^{tidal} / \Delta \Psi_2^{tidal}| \sim \mathcal{O}(10^{-3})$$

We hardly expect to observe higher tidal coefficients in the waveform

# Accumulated GW phase (I)

the number of wave cycles in frequency domain

$$\Delta N_{\text{cyc},\Psi} = \frac{1}{2\pi} \left[ \Psi(f_2) - \Psi(f_1) + (f_1 - f_2) \frac{d\Psi}{df_1} \right], \quad (7.8)$$

16

f<sub>1</sub> = 10 Hz, the low frequency cutoff for Advanced LIGO due to seismic noises

> Waveform models: TaylorT2 for ΔN<sub>cyc</sub> TaylorF2(SPA) ΔN<sub>cyc,Ψ</sub>

Moore et al., PRD.93.124061(2016)

|             | $1.4M_{\odot} + 1$  | $1.4M_{\odot} + 1.4M_{\odot}, f_2 = 1000 \text{ Hz}$ |                                  |  |  |  |
|-------------|---------------------|------------------------------------------------------|----------------------------------|--|--|--|
| PN order    | $\Delta N_{ m cyc}$ | $\Delta N_{ m cyc,\Psi}$                             | $\Delta N_{ m useful}^{ m norm}$ |  |  |  |
| 0PN(circ)   | 16 031              | 986 372                                              | 1821                             |  |  |  |
| 0PN(ecc)    | -463                | -36 137                                              | -6.37                            |  |  |  |
| 1PN(circ)   | 439                 | 21 743                                               | 125                              |  |  |  |
| 1PN(ecc)    | -15.8               | -1193                                                | -0.332                           |  |  |  |
| 1.5PN(circ) | -208                | -8520                                                | -94.8                            |  |  |  |
| 1.5PN(ecc)  | 1.67                | 103                                                  | 0.113                            |  |  |  |
| 2PN(circ)   | 9.54                | 294                                                  | 6.70                             |  |  |  |
| 2PN(ecc)    | -0.215              | -15.4                                                | -0.00817                         |  |  |  |
| 2.5PN(circ) | -10.6               | -218                                                 | -10.6                            |  |  |  |
| 2.5PN(ecc)  | 0.0443              | 2.61                                                 | 0.004 73                         |  |  |  |
| 3PN(circ)   | 2.02                | 18.2                                                 | 2.80                             |  |  |  |
| 3PN(ecc)    | 0.002 00            | 0.119                                                | -0.000238                        |  |  |  |
| 3.5PN(circ) | -0.662              | -4.39                                                | -0.977                           |  |  |  |
| Total       | 15 785              | 962 445                                              | 1843                             |  |  |  |

#### Accumulated GW phase (2)



#### Accumulated GW phase (2)



#### A new constraint by GW Observation



Abbott et al. (LSC and Virgo), arxiv:1805.11581 (PRL accepted)

 $\rho_{nuc} = 2.8 \times 10^{14} \text{ g/cm}^3$ 

#### Central Density at $M_{NS}$ =1.4 M $_{\odot}$



#### **Recent Researches**



| EOS            | R     | β     | $k_2$  | $\lambda$ | L   |   |
|----------------|-------|-------|--------|-----------|-----|---|
| APR            | 11.55 | 0.179 | 0.0721 | 1.48      | 62  |   |
| MDI $(x=0)$    | 11.85 | 0.174 | 0.0707 | 1.65      | 62  |   |
| MDI $(x = -1)$ | 13.59 | 0.152 | 0.0831 | 3.85      | 107 | 3 |
| DBHF+Bonn B    | 12.64 | 0.163 | 0.0946 | 3.06      | 69  |   |
| FPS            | 10.84 | 0.191 | 0.0664 | 1.00      | 35  |   |
| SLY4           | 11.72 | 0.176 | 0.0762 | 1.68      | 47  |   |

[B] P.G. Krastev, and B.-A. Li, arXiv:1801.04620v1

20



#### Comparison with recent works



#### Comparison with recent works



Red line:  $\Lambda$  (1.4M<sub>o</sub>) = 2.88 \* 10<sup>-6</sup> (R/km)<sup>7.5</sup> (fitting function in [C])

## Prospects of the Observing Runs

"Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA", arXiv:1304.0670v4, LIGO-P1200087-v45, Living Rev. Relativity, 21, 3 (2018)

| Epoch                                |                         |                    | 2015-2016 | 2016-2017 | 2018-2019  | 2020+      | 2024+   |
|--------------------------------------|-------------------------|--------------------|-----------|-----------|------------|------------|---------|
| Planned run duration                 |                         | 4 months           | 9 months  | 12 months | (per year) | (per year) |         |
|                                      |                         | LIGO               | 40-60     | 60-75     | 75-90      | 105        | 105     |
| Expected burst                       | range/Mpc               | Virgo              | _         | 20 - 40   | 40 - 50    | 40 - 70    | 80      |
|                                      |                         | KAGRA              | _         | —         | —          | —          | 100     |
|                                      |                         | LIGO               | 40-80     | 80-120    | 120 - 170  | 190        | 190     |
| Expected BNS                         | range/Mpc               | Virgo              | _         | 20 - 65   | 65-85      | 65-115     | 125     |
|                                      |                         | KAGRA              |           | —         | —          | —          | 140     |
| Achieved BNS range/Mpc LIGO<br>Virgo |                         | LIGO               | 60-80     | 60-100    | —          | —          |         |
|                                      |                         | Virgo              | _         | 25 - 30   | —          | —          | —       |
|                                      |                         | KACRA              |           |           |            |            |         |
| Estimated BNS detections             |                         | 0.05-1             | 0.2-4.5   | 1-50      | 4-80       | 11-180     |         |
| Actual BNS detections                |                         | 0                  | 1         | —         | —          | _          |         |
| 90% CR                               | % within                | 5 deg <sup>2</sup> | < 1       | 1-5       | 1-4        | 3-7        | 23-30   |
|                                      |                         | $20 \text{ deg}^2$ | < 1       | 7 - 14    | 12-21      | 14 - 22    | 65 - 73 |
|                                      | median/deg <sup>2</sup> |                    | 460-530   | 230 - 320 | 120 - 180  | 110 - 180  | 9-12    |
| Searched area                        | % within                | 5 deg <sup>2</sup> | 4-6       | 15-21     | 20-26      | 23-29      | 62-67   |
|                                      |                         | $20 \text{ deg}^2$ | 14-17     | 33-41     | 42-50      | 44-52      | 87-90   |
|                                      |                         |                    |           |           |            |            |         |

#### We expect to observe more BNS and/or NS-BH

# Summary

- I. Tidal deformability of a neutron star can be observed by gravitational-wave detection.
  - The most dominant tidal coefficient is I=2 electric-type coefficient  $\lambda 2$ .
  - The weighted Λ in BNS was estimated by observation of GW170817
- 2. Tidal deformability is a new constraint on nuclear equation of states provided by GW observation.
  - more compact NS EoS is preferred.
- 3. In coming GW Obs., NS EoS can be studied more precisely.
- 4. Further investigation on  $\Lambda$  and NS EoS will be conducted by using Bayesian analyses on GW DA as well as HIC to study Esym.

# Thank you for your attention.

# Extra Slides

#### Localization



#### Magnetic-type tidal coefficients

Damour and Nagar, PRD 80, 084035 (2009)

Likewise,

Magnetic-type tidal coefficients

$$S_{L}^{A} = \sigma_{\ell}^{A} H_{L}^{A}.$$

$$\psi'' + \frac{e^{\lambda}}{r^{2}} [2m + 4\pi r^{3}(p - e)]\psi'$$

$$- e^{\lambda} \left[ \frac{\ell(\ell + 1)}{r^{2}} - \frac{6m}{r^{3}} + 4\pi(e - p) \right]\psi = 0. \quad (31)$$

$$= \frac{\ell - 1}{4(\ell + 2)} \frac{j_{\ell}}{(2\ell - 1)!!} R^{2\ell + 1},$$

$$j_{\ell} = c^{2\ell + 1} b_{\ell} = -c^{2\ell + 1} \frac{\psi_{P}'(\hat{r}) - cy_{\text{odd}} \psi_{P}(\hat{r})}{\psi_{Q}'(\hat{r}) - cy_{\text{odd}} \psi_{Q}(\hat{r})} \Big|_{\hat{r} = 1/c}.$$

$$G\sigma_{2} = \frac{1}{48} j_{2} R^{5} = \frac{1}{48} b_{2} \left(\frac{GM}{c_{0}^{2}}\right)^{5},$$

 $j_2 = \frac{96c^5(2c-1)(y-3)}{5(2c(12(y+1)c^4+2(y-3)c^3+2(y-3)c^2+3(y-3)c-3y+9)+3(2c-1)(y-3)\log(1-2c))}.$  (73)

#### Magnetic-type tidal coefficients

Damour and Nagar , PRD 80, 084035 (2009)



 $j_2 = \frac{96c^5(2c-1)(y-3)}{5(2c(12(y+1)c^4+2(y-3)c^3+2(y-3)c^2+3(y-3)c-3y+9)+3(2c-1)(y-3)\log(1-2c))}.$  (73)

## Higher order terms in GW phase (1)

Rotational-tidal phasing of the binary neutron star waveform - arxiv:1805.01882

$$\Psi = \frac{3M}{128\mu} x^{-2.5} \left[ 1 - \frac{39}{2} \tilde{\Lambda} x^5 + \tilde{\Sigma} x^6 - \tilde{X} x^{6.5} - \tilde{\Lambda}_3 x^7 + \tilde{\Sigma}_3 x^8 \right],$$
(8)

coupled to spins

$$\begin{split} \tilde{X} = & \frac{1}{21M^6} c^{12} \bigg\{ \chi^{(1)} \left[ 36(35 + 614q) \hat{\lambda}_2^{(1)} - (7 - 4751q) \hat{\sigma}_2^{(1)} - 2316q \hat{\lambda}_3^{(1)} - 3474q \hat{\sigma}_3^{(1)} \right] \\ & + \chi^{(2)} \left[ 36(35 + 614/q) \hat{\lambda}_2^{(2)} - (7 - 4751/q) \hat{\sigma}_2^{(2)} - 2316 \hat{\lambda}_3^{(2)}/q - 3474 \hat{\sigma}_3^{(2)}/q \right] \bigg\}, \end{split}$$

$$\tilde{\Lambda}_3 = \frac{4000}{9M^7} c^{14} (q\lambda_3^{(1)} + \lambda_3^{(2)}/q),$$
$$\tilde{\Sigma}_3 = \frac{29925}{11M^7} c^{14} (q\sigma_3^{(1)} + \sigma_3^{(2)}/q).$$

# Higher order terms in GW phase (2)

Post-Newtonian spin-tidal couplings for compact binaries arxiv:1805.01487

$$\begin{split} \psi(x) &= \frac{3}{128\nu x^{5/2}} \begin{cases} 1 + \left(\frac{3715}{756} + \frac{55}{9}\nu\right) x + \left(\frac{113}{3} \times \left(\begin{bmatrix} \frac{6}{5} & \frac{8}{10} & \frac{100 \times 5}{2} & \frac$$

NuSYM 2018 @ 2018.09.10

 $\lambda_{23,32}, \sigma_{23,32} \lambda_3 \sigma_3$ 

 ${\rm LO}\propto\Lambda$ 

 $\mathbf{5}$ 

# Dynamic tide

$$k_{\ell}^{\text{eff}} = k_{\ell} \left[ a_{\ell} + \frac{b_{\ell}}{2} \left( \frac{Q_{m=\ell}^{\text{DT}}}{Q_{m=\ell}^{\text{AT}}} + \frac{Q_{m=-\ell}^{\text{DT}}}{Q_{m=-\ell}^{\text{AT}}} \right) \right],$$

$$\begin{split} \frac{Q_m^{\rm DT}}{Q_m^{\rm AT}} &\approx \frac{\omega_f^2}{\omega_f^2 - (m\Omega)^2} + \frac{\omega_f^2}{2(m\Omega)^2 \epsilon_f \Omega_f'(\phi - \phi_f)} \\ &\pm \frac{i\omega_f^2}{(m\Omega)^2 \sqrt{\epsilon_f}} e^{\pm i\Omega_f' \epsilon_f(\phi - \phi_f)^2} \int_{-\infty}^{\sqrt{\epsilon_f}(\phi - \phi_f)} e^{\mp i\Omega_f' s^2} ds, \end{split}$$

(2)

PRL.116.181101 (arxiv:1602.00599)



#### Recent Researches (I)



[A] F.J. Fattoyev, J. Piekarewicz, and C.J. Horowitz, arXiv:1711.06615v2

- RMF models
- Correlating neutron skin of  $^{208}\text{Pb}$  ,  $\Lambda(1.4\text{M}\odot)$  and R(1.4M $\odot)$
- 490 <  $\Lambda$ (1.4M $_{\odot}$ ) < 800
- 12.55 km < R(1.4M<sub>☉</sub>) < 13.76 km

| EOS            | R     | β     | $k_2$  | λ    | L   |
|----------------|-------|-------|--------|------|-----|
| APR            | 11.55 | 0.179 | 0.0721 | 1.48 | 62  |
| MDI $(x=0)$    | 11.85 | 0.174 | 0.0707 | 1.65 | 62  |
| MDI $(x = -1)$ | 13.59 | 0.152 | 0.0831 | 3.85 | 107 |
| DBHF+Bonn B    | 12.64 | 0.163 | 0.0946 | 3.06 | 69  |
| FPS            | 10.84 | 0.191 | 0.0664 | 1.00 | 35  |
| SLY4           | 11.72 | 0.176 | 0.0762 | 1.68 | 47  |

#### [B] P.G. Krastev, and B.-A. Li, arXiv:1801.04620v1

- MDI EoS
  - SNM part and symmetry energy constrained by heavy-ion reaction data up to 4.5  $\rho$ 0 and 1.2  $\rho$ 0, respectively
- 341 <  $\Lambda$ (1.4M $_{\odot}$ ) < 782
- 11.5 km < R(1.4Mo) < 13.6 km

#### Recent Researches (2)



- intermediate density
- 120 <  $\Lambda$ (1.4M $\odot$ ) < 800
- 9.9 km < R(1.4M<sub>☉</sub>) < 13.6 km
- $\Lambda$  (I.4M $_{\odot}$ ) = 2.88 \* I0<sup>-6</sup> (R/km)<sup>7.5</sup>



[D] Y.Lim and J. Holt, arXiv:1803.02803

- Prediction with uncertainties inherent EFT
- ~ 73000 energy density functionals
- 350 < Λ(I.4M⊙) < 540
- 11.65 km < R(1.4M<sub>•</sub>) < 12.84 km

#### Constraints on Nuclear EoS

- Nuclear data: hundreds of models (Skyrme force, RMF, ...)
- Neutron star maximum mass
  - 1.97 ± 0.04 M<sub>☉</sub> [Nature 467, 1081 (2010)]
  - 2.01 ± 0.04 M<sub>☉</sub> [Science 340, 448 (2013)]
- II experimental/empirical data for nuclear matter around saturation density [Phys.Rev. C 85, 035201 (2012)]

| Constraint | Quantity                               | Eq.      | Density Region                          | Range of constraint      | Range of constraint       | Ref.           |
|------------|----------------------------------------|----------|-----------------------------------------|--------------------------|---------------------------|----------------|
|            |                                        |          |                                         | $\exp/emp$               | from CSkP                 |                |
| SM1        | Ko                                     | (7),(15) | $ ho_{\rm o}~({\rm fm}^{-3})$           | $200-260~{\rm MeV}$      | $202.0 - 240.3 { m MeV}$  | [64]           |
| SM2        | $\mathrm{K}'=-\mathrm{Q}_{\mathrm{o}}$ | (8),(16) | $ ho_{\rm o}~({\rm fm}^{-3})$           | $200-1200~{\rm MeV}$     | $362.5 - 425.6 { m MeV}$  | [65]           |
| SM3        | $\mathrm{P}( ho)$                      | (6)      | $2 < \frac{\rho}{\rho_o} < 3$           | Band Region              | see Fig. 1                | [78]           |
| SM4        | $\mathrm{P}( ho)$                      | (6)      | $1.2 < \frac{\rho}{\rho_{\rm o}} < 2.2$ | Band Region              | see Fig. 2                | [80]           |
| PNM1       | $\frac{E_{PNM}}{E_{PNM}^{o}}$          | (31)     | $0.014 < rac{ ho}{ ho_{ m o}} < 0.106$ | Band Region              | see Fig. 3                | [39, 40]       |
| PNM2       | $\mathrm{P}( ho)$                      | (6)      | $2 < \frac{\rho}{\rho_o} < 3$           | Band Region              | see Fig. 5                | [78]           |
| MIX1       | J                                      | (9)      | $ ho_{ m o}~({\rm fm}^{-3})$            | $30-35~{\rm MeV}$        | $30.0 - 35.5 { m MeV}$    | [44]           |
| MIX2       | L                                      | (10)     | $ ho_{\rm o}~({\rm fm}^{-3})$           | $40$ $-$ 76 ${\rm MeV}$  | $48.6-67.1~{\rm MeV}$     | [101]          |
| MIX3       | $K_{	au,	ext{v}}$                      | (21)     | $ ho_{\rm o}~({\rm fm}^{-3})$           | $-760$ $ -372~{\rm MeV}$ | $-407.1--360.1~{\rm MeV}$ | [107]          |
| MIX4       | $rac{\mathcal{S}( ho_{ m o}/2)}{J}$   | -        | $ ho_{\rm o}~({\rm fm}^{-3})$           | 0.57 - 0.86              | 0.61 - 0.67               | [110]          |
| MIX5       | $\frac{3P_{PNM}}{L\rho_{\rm o}}$       | (41)     | $ ho_{ m o}~({ m fm}^{-3})$             | 0.90 - 1.10              | 1.02 - 1.10               | [ <u>112</u> ] |

### Selected EoSs

Good saturation properties

• Mmax more than 2Msun

• Skyrme force models

- 2000 GSkI SLv4 SkI4 SGI 1500 KIDS P [MeV · fm<sup>-3</sup> 1000 500 °ò 1000 1500 2000 500 250  $E [MeV \cdot fm^{-3}]$
- $M_{\rm max}$ Model L $E_0$  $K_0$  $-Q_0$ J $-K_{\tau}$  $\rho_0$  $\operatorname{Exp}/\operatorname{Emp}|\simeq 0.16|\simeq 16.0$  $200 \sim 260$  $372 \sim 760$  $> 1.93 \sim 2.05$  $200 \sim 1200$  $30 \sim 35$  $40 \sim 76$ CSkP  $202.0 \sim 240.3$   $362.5 \sim 425.6$   $30.0 \sim 35.5$   $48.6 \sim 67.1$   $360.1 \sim 407.1$ GSkI 0.15916.02230.2405.6364.21.9832.063.5SLy4 0.16015.97229.9363.132.045.9322.82.07SkI4 0.16015.95248.0331.229.5322.22.1960.4SGI 0.15415.89261.8297.928.363.9 362.52.25KIDS 0.16016.00240.0372.7 32.849.1375.12.14

Kim et al., arxiv:1805.00219

KIDS (Korea: IBS-Daegu-Sungkyunkwan): A new systematic expansion scheme for nuclear EDF [Phys. Rev. C 97, 014312 (2018)]

• Basically fitted to properties of well-known nuclei

#### Mass-Radius relations



GW170817 - Abbott et al. (LSC and Virgo), arxiv:1805.11579 - Mchirp = 1.188 M.

- low spin prior : M<sub>1</sub>=1.36~1.60 M<sub>☉</sub>, M<sub>2</sub>=1.16~1.36 M<sub>☉</sub>
- high spin prior : M1=1.36~1.89 M. M2=1.00~1.36 M.

#### Central Density at $M_{NS}$ =1.4 M $_{\odot}$





#### Mass-Radius relations



GW170817 - Abbott et al. (LSC and Virgo), arxiv:1805.11579 - Mchirp = 1.188 M.

- low spin prior : MI =  $1.36 \sim 1.60 \text{ M}_{\odot}$ , M2 =  $1.17 \sim 1.36 \text{ M}_{\odot}$
- high spin prior : MI = 1.36 ~ 2.26 M $\odot$  , M2 = 0.86 ~ 1.36 M $\odot$

#### Tidal deformability of a NS



#### O2 Summary

