Towards a unified equation of state

and the effect of symmetry energy in quark-matter

Niels-Uwe Friedrich Bastian University of Wroclaw, Institute of Theoretical Physics

Busan, 13. September 2018

Unified equation of state

Keywords: nuclear clusters, chiral restoration, deconfinement, HIC, SN, NS, PNS, BNSM, ASSM.

Strongly interacting matter

Outline

(light) Nuclear clusters

- medium modification of free particles
- selfenergy

- Cluster-meanfield
- Cluster selfenergy, screening and Pauli blocking

- ideal mixture and chemical picture
- NSE

- medium modifications of particles and correlations
- GBU

• cluster-virial expansion with medium effects

- virial expansion and twoparticle correlation
- Beth-Uhlenbeck formula

• Cluster-virial expansion

```
G. Röpke, N.-U. Bastian, D. Blaschke,
T. Klahn, S. Typel and H.~H. Wolter,
Nucl. Phys. A 897, 70 (2013)
```

Homogeneous nuclear matter

- Density dependent relativistic mean field (RMF) model DD2¹
- Parameters adjusted to nuclear data
- Fulfills all solid constraints perfectly up to saturation density
- Variations like DD2f² and DD2vex³ alter behavior above saturation

¹Typel, Wolter, NPA **656** (1999) 331 ²Typel, Röpke, Klähn, Blaschke, Wolter, PRC **81** (2017) 015803 ³Typel, EPJA (2016)

Quarks Models

2-phase construction with NJL

NUFB, D. Blaschke, 2016 J. Phys.: Conf. Ser. 668 012042

Density functional approach: Stringflip model

Low density

- Color field lines compressed by dual Meissner effect
- String-tension high

High density

- Dual superconducting vacuum occupied by hadrons
- Pressure on field lines reduced
- Effective string-tension reduced

$$\sigma = \Phi \sigma_0$$

$$U^{\rm SF}(n_{\rm S}, n_{\rm V}) = D(n_{\rm V}) n_{\rm S}^{2/3}$$

G. Ropke, et. al., Phys.Rev. D34 (1986) 3499-3513 M. Kaltenborn, **NUFB**, D. Blaschke, PRD 96, 056024 (2017)

Stringflip model – effective mass

Mean-field model

M. Kaltenborn, NUFB, D. Blaschke, PRD 96, 056024 (2017)

Possibility of 1st order PT at hight densities

1st order PT – Astrophysics

Neutron star configurations

Supernova explosions of 50Ms stars

Binary neutron star mergers

M. Kaltenborn, **NUFB**, D. Blaschke, PRD 96, 056024 (2017) T. Fischer, **NUFB**, and others. arXiv:1712.08788

A. Bauswein, NUFB, and others, arXiv: 1809.01116, PRL (submitted)

1st order PT – Heavy Ion Collisions

Anti-flow of clusters occur²

strong signal (wiggle) in the baryon stopping signal ¹

• Application of the SFM to HIC is ongoing work

- ¹ Yu. B. Ivanov, PRC 87, 064904 (2013)
- ² NUFB, P. Batyuk, D. Blaschke, and others, Eur.Phys.J. A52 (2016) no.8, 244

Stringflip model – vector interaction

• How to adjust the coupling?

M. Kaltenborn, **NUFB**, D. Blaschke, PRD 96, 056024 (2017) T. Fischer, **NUFB**, and others. ArXiv:1712.08788

Iso-Spin Mean Field

Cluster expansion

Generating functional formalism by Baym and Kadanoff^{1,2}

 $\Omega = -\mathrm{Tr} \, \ln(-G_1) - \mathrm{Tr}\Sigma_1 G_1 + \Phi \qquad \text{With}$

 $\Sigma_1(1,1') = \frac{\delta\Phi}{\delta G_1(1,1')}.$

Can be generalized for a consistent cluster expansion³

$$\Omega = \sum_{l=1}^{A} \Omega_{l} = \sum_{l=1}^{A} \left\{ c_{l} \left[\operatorname{Tr} \ln \left(-G_{l}^{-1} \right) + \operatorname{Tr} \left(\Sigma_{l} \ G_{l} \right) \right] + \sum_{\substack{i,j \\ i+j=l}} \Phi[G_{i}, G_{j}, G_{i+j}] \right\}$$

with

$$\Sigma_A(1\dots A, 1'\dots A', z_A) = \frac{\delta\Phi}{\delta G_A(1\dots A, 1'\dots A', z_A)}$$

Always sustains full Dyson equation and thermodynamic stability

$$G_A = G_A^0 - \Sigma_A$$

$$\frac{\partial\Omega}{\partial G_A} = 0$$

Reduction on generalized sunset diagrams is recommended

¹Baym, G.; Kadanoff, L.P. Phys. Rev. 1961, 124, 287–299. ²Baym, G. Phys. Rev. 1962, 127, 1391–1401. ³**NUFB**, and others, Universe 2018, 4(6), 67

Niels-Uwe Friedrich Bastian

Cluster expansion

NUFB, and others, Universe 2018, 4(6), 67

Constraints to consider

Last Slide

Conclusions

- Astrophysical objects and HIC collisions are based on the same physics of strongly interacting many-particle systems
- A sophisticated equation of state should be able to describe both
- Hadrons are bound states of quarks and should be treated as such
- This would cure problems with inconsistent inclusion of confinement and chiral physics
- Leads to consistent inclusion of substructure effects of Baryons (e g. Pauli blocking)

Outlook

- Density functional with chiral physics
- Cluster expansion on basis of density functionals
- Ongoing and future experiments (NICER, NICA, FAIR, GW) will provide further insight and might exclude models

Collaboration

• David Blaschke, Tobias Fischer, Stefan Typel, Gerd Röpke, Yuri Ivanov

Thank you!