Nusym2018, Sep. 10-13th, 2018 Hanwha Resort, Haeundae, Busan

Relevant studies on isospin splitting of nucleon effective mass Jun Xu (徐骏**)**

Shanghai Institute of Applied Physics, CAS

Based on:

Phys. Rev. C 91, 014611 (2015); Phys. Rev. C 91, 037601 (2015); Phys. Rev. C 91, 047601 (2015); Phys. Rev. C 95, 034324 (2017); Prog. Part. Nucl. Phys. 99, 29 (2018); arXiv: 1807.01849 [nucl-th]

Nucleon effective mass

Electron effective mass:

dispersion relation different from free electrons near the energy gap

$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 \epsilon}{dk^2}$	$\frac{\frac{1}{\frac{x+\epsilon}{m}}}{\frac{x+\epsilon}{m}}$
Nucleon effective mass:	
h -medium interaction lowers the nucleon mass	
P -mass:	
$\frac{\tilde{m}_r^*}{m} = \left[1 + \frac{m}{p} \frac{\partial U_r(p, \varepsilon_r(p))}{\partial p}\right]^{-1}$	E -mass:
$\frac{\overline{m}_r^*}{m} = 1 - \frac{\partial U_r(p, \varepsilon_r(p))}{\partial \varepsilon_r}$	
$\tau = n, p$	
Dirac mass:	
$m^* = 1 - \frac{\partial U_r(p, \varepsilon_r(p))}{\partial \varepsilon_r}$	

Skyrme-Hartree-Fock: non-relativistic, momentum-dependent potential Relativistic mean-field: relativistic, meson exchange

Comparison between non-relativistic mass with relativistic mass Lorentz effective mass:

$$
m_{Lorentz,\tau}^* = m \left(1 - \frac{dU_{SEP,\tau}}{dE_{\tau}} \right) = (E_{\tau} - \Sigma_{\tau}^0) \left(1 - \frac{d\Sigma_{\tau}^0}{dE_{\tau}} \right) - (m + \Sigma_{\tau}^s) \frac{d\Sigma_{\tau}^s}{dE_{\tau}} + m - E_{\tau}
$$

M. Jaminon and C. Mahaux, PRC (1989); B.A. Li, L.W. Chen, and C.M. Ko, Phys. Rep. (2008); Z.X. Li, Nucl. Phys. Rev. (2014)

Neutron-proton effective mass splitting

Isospin dynamics in nuclear reactions $\frac{1}{\sqrt{2}}$

$$
\frac{d\vec{p}}{dt} = -\nabla U_{\tau} \underbrace{\vec{p}}_{m_{\tau}^{*}} + \nabla_{p} U_{\tau} = \frac{\vec{p}}{m_{\tau}^{*}}
$$
\n
$$
\underbrace{\vec{p}}_{m_{\tau}} = \frac{\vec{p}}{m_{\tau}} + \nabla_{p} U_{\tau} = \frac{\vec{p}}{m_{\tau}}
$$
\n
$$
\underbrace{\text{Effective mass}}_{m} \underbrace{m_{\tau}^{*}}_{m} = \left[1 + \frac{m}{p} \frac{dU_{\tau}(p)}{dp}\right]^{-1}, \tau = n, p
$$
\n
$$
\underbrace{\text{Effective mass}}_{m} \underbrace{m_{\tau}^{*}}_{m} = \left[1 + \frac{m}{p} \frac{dU_{\tau}(p)}{dp}\right]^{-1}, \tau = n, p
$$
\n(non-relativistic p-mass)

Hugenholtz–Van Hove theorem $\sum_{n(n)}^{*} (\delta = 0)$ (p) **Isoscalar effective mass:** $m^*_s \approx m^*_{n(p)}\big(\delta = 0\big)$ <code>Isovector</code> effective mass:

$$
E_{sym}(\rho) = \frac{1}{3} \frac{\hbar^2 k_F^2}{2m_0^*} + \frac{1}{2} U_{sym}(\rho, k_F) \qquad L(\rho) \approx \frac{2}{3} \frac{\hbar^2 k_F^2}{2m_0^*} + \frac{3}{2} U_{sym}(\rho, k_F) + \frac{\partial U_{sym}}{\partial k} \bigg|_{k_F} k_F
$$

C. Xu, B.A. Li, and L.W. Chen, PRC (10); R. Chen, B.J. Cai, L.W. Chen, B.A. Li, X.H. Li, and C. Xu, PRC (12)

 \sim

np effective mass and HIC dynamics I

np effective mass and HIC dynamics II

An improved momentum-dependent interaction (ImMDI)

Effective NN potential:

$$
v(\vec{r}_1, \vec{r}_2) = \frac{1}{6} t_3 (1 + x_3 P_\sigma) \rho^{\gamma} \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) \delta(\vec{r}_1 - \vec{r}_2)
$$

$$
v(W + CP - HP - MP - NP^{-p}) e^{-\mu |\vec{r}_1 - \vec{r}_2|}
$$

 $+(W+GP_{\sigma}-HP_{\tau}-MP_{\sigma}P_{\tau})\frac{e}{|\vec{r}_1-\vec{r}_2|}$
Potential energy density:

$$
V(\rho,\delta) = \frac{A_u \rho_n \rho_p}{\rho_0} + \frac{A_l}{2\rho_0} \left(\rho_n^2 + \rho_p^2\right) + \frac{B}{\sigma + 1} \frac{\rho^{\sigma+1}}{\rho_0^{\sigma}}
$$

$$
\times (1 - x\delta^2) + \frac{1}{\rho_0} \sum_{\tau,\tau'} C_{\tau,\tau'}
$$

$$
\times \iint d^3p d^3p' \frac{f_{\tau}(\vec{r},\vec{p}\,)f_{\tau'}(\vec{r},\vec{p}\,')}{1+(\vec{p}-\vec{p}\,')^2/\Lambda^2}.
$$

Mean-field potential:
 $U_{\tau}(\rho,\delta,\vec{p}) = A_u \frac{\rho_{-\tau}}{\rho_0} + A_l \frac{\rho_{\tau}}{\rho_0}$

$$
+B\left(\frac{\rho}{\rho_0}\right)^{\sigma} (1 - x\delta^2) - 4\tau x \frac{B}{\sigma + 1} \frac{\rho^{\sigma - 1}}{\rho_0^{\sigma}} \delta \rho_{-\tau} + \frac{2C_l}{\rho_0} \int d^3 p' \frac{f_{\tau}(\vec{r}, \vec{p}\,')}{1 + (\vec{p} - \vec{p}\,')^2/\Lambda^2} + \frac{2C_u}{\rho_0} \int d^3 p' \frac{f_{-\tau}(\vec{r}, \vec{p}\,')}{1 + (\vec{p} - \vec{p}\,')^2/\Lambda^2}. \qquad \mathbf{R}(\mathbf{r}, \mathbf{r})
$$

$$
A_{l}(x, y) = A_{l0} + y + x \frac{2B}{\sigma + 1},
$$

\n
$$
A_{u}(x, y) = A_{u0} - y - x \frac{2B}{\sigma + 1},
$$

\n
$$
C_{l}(y, z) = C_{l0} - 2(y - 2z) \frac{p_{f0}^{2}}{\Lambda^{2} \ln \left[(4p_{f0}^{2} + \Lambda^{2})/\Lambda^{2} \right]},
$$

\n
$$
C_{u}(y, z) = C_{u0} + 2(y - 2z) \frac{p_{f0}^{2}}{\Lambda^{2} \ln \left[(4p_{f0}^{2} + \Lambda^{2})/\Lambda^{2} \right]},
$$

0, we choose the following empirical values: $\rho_0 = 0.16$ fm⁻³, $E_0(\rho_0) = -16 \text{ MeV}, K_0 = 230 \text{ MeV}, m_s^* = 0.7m, E_{sym}(\rho_0) =$ 32.5 MeV, and $U_{0,\infty} = 75$ MeV, which lead to $A_{l0} = A_{u0} =$ -66.963 MeV, $B = 141.963$ MeV, $C_{l0} = -60.4860$ MeV, $C_{u0} = -99.7017$ MeV, $\Lambda = 2.42401 p_{f0}$, and $\sigma = 1.26521$.

$f_{\tau}(\vec{r}, \vec{p})$ ~ $\frac{1}{\exp[(\frac{p^2}{2m} + U_{\tau}(\vec{p}) - \mu_{\tau})/T] + 1}$ **For nuclear matter**

Relevant parameters: x, y, z JX, L.W. Chen, and B.A. Li, PRC 91, 014611 (2015)

np effective mass splitting and nuclear thermodynamics I

np effective mass splitting and nuclear thermodynamics II

Shear viscosity

Shear viscosity from a relaxation time approach

Shear viscosity:

$$
\eta = \sum_{\tau} -\frac{d}{(2\pi)^3} \int \tau_{\tau}(p) \frac{p_z^2 p_x^2}{p_{\tau}} \frac{dn_{\tau}}{dp} dp_x dp_y dp_z
$$

$$
\tau = n, p
$$

$$
n_{\tau}^{*}(\vec{p}) = \left\{ \exp \left[\left(\frac{p^{2}}{2m} + U_{\tau}(\vec{p}) - \mu_{\tau} \right) / T \right] + 1 \right\}^{-1}
$$

From linearizing isospin-dependent BUU equation

$$
\sigma_{NN}^{\text{medium}} = \sigma_{NN} \left(\frac{\mu_{NN}^{\star}}{\mu_{NN}} \right)^2
$$

near Fermi surface

JX, PRC 84, 064603 (2011)

np effective mass splitting and nuclear transport properties

Photon absorption measurement $E_{-1} = 13.46 \text{ MeV}$

Isovector giant dipole resonance Symmetry energy as a restoring force

Harmonic oscillator *m k* $\omega \propto$

 MeV

 e^{2} fin $^{2}/0.2$

Constrain the symmetry energy and the np effective mass splitting using the exp data of ²⁰⁸Pb giant resonance

With random-phase approximation: Z. Zhang and L.W. Chen, PRC (2017)

> **Hai-Yun Kong, JX*, et al., Phys. Rev. C 95, 034324 (2017) With IBUU transport model:**

Subtract quasideuteron excitation $\alpha_{\rm p}$ = 19.6 ± 0.6 fm³

Extract m^s * from ISGQR

Operator of isoscalar giant quadrupole resonance (ISGQR) :

$$
\hat{Q}=\sum_{i=1}^{A}r_i^2Y_{20}\left(\hat{r_i}\right)=\sum_{i=1}^{A}\sqrt{\frac{5}{16\pi}}\left(3z_i^2-r_i^2\right)
$$
From $\alpha-\text{}^{208}Pb$ scattering data

Initial excitation of ISGQR (based on scaling relation):

$$
\begin{cases}\nx \to x/\lambda \\
y \to y/\lambda \\
z \to \lambda^2 z\n\end{cases}\n\begin{cases}\np_x \to \lambda p_x \\
p_y \to \lambda p_y \\
p_z \to p_z/\lambda^2\n\end{cases}
$$
\n
$$
\lambda = 1.1
$$

Hai-Yun Kong, JX*, et al., Phys. Rev. C 95, 034324 (2017)

Extract L and m_v^* **from IVGDR**

Operator of

isovector giant dipole resonance (IVGDR):

$$
\hat{D} = \frac{NZ}{A}\hat{X},
$$

Initial excitation of IVGDR:

$$
p_i \rightarrow \begin{cases} p_i - \eta \frac{N}{A} & \text{(protons)}\\ p_i + \eta \frac{N}{A} & \text{(neutrons)} \end{cases}
$$

Strength function: $S(E) = \frac{-Im\left[\tilde{D}(\omega)\right]}{\pi n}$ **function:** $S(E) = \frac{E - E}{\pi \eta}$ (a), (b), and (c) correspond to different values of L, m_v

$$
\tilde{D}(\omega) = \int_{t_0}^{t_{max}} D(t) e^{i\omega t} dt
$$

Extracted slope parameter of symmetry energy:

$$
L = 53.85 \pm 10.29 \text{ (MeV)}
$$

Electronic dipole polarizability:

Extracted np effective mass splitting:

 $\int_0^\infty E^{-1} S(E) dE$ ∞ $=\int_{a}^{\infty} E^{-}$ 0 $\overline{\ }^{1}S(E)$

Hai-Yun Kong, JX*, et al., Phys. Rev. C 95, 034324 (2017)

Isospin transport in HIC

The isovector current: $\vec{j}_n - \vec{j}_p = (D_n^{\rho} - D_p^{\rho})\nabla \rho - (D_n^I - D_p^I)\nabla \delta$.

time

Initial configuration Pile-up/bounce-back

Complete equilibration

Partial transparency

Isospin drift Isospin diffusion

Hudan et al., Phys. Rev. C. 86, 921603(R) (2012)

B.A. Li, L.W. Chen, and C.M. Ko, Phys. Rep. 464, 113 (2008)

M. B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004)

Jedele et al., Phys. Rev. Lett. 118, 062501 (2017)*.*

Isospin transport between projectile and target

⁴⁰Ca+¹²⁴Sn@b=1fm

$$
\lambda(t) \equiv \frac{(n/p)_{y>0}}{(n/p)_{y<0}}
$$

characterizing isospin stopping/equilibrium

Isospin relaxation time τ is defined when the isospin equlibration meter [λ(t)-1]/[λ(0)-1] first crosses 0.

H.S. Wang, JX*, et al., arXiv: 1807.01849 [nucl-th]

Isospin transport between neck and spectator

Isospin transport between neck and spectator

Final remarks

• **The effect of np effective mass splitting is as important as Esym in isospin dynamics of HIC and non-negligible for properties of asymmetric nuclear matter.**
The neutron-proton effective mass splitting $m_{n-p}(\rho_0)$ in neutron-rich matter of isospin asymmetry δ at saturation density.

Acknowledge

Collaborators: **Bao-An Li (TAMUC) Lie-Wen Chen (SJTU)** **Students in SINAP**: **Hai-Yun Kong Han-Sheng Wang**

Thank you! xujun@sinap.ac.cn

Backup 1

MDI: from NN interaction to energy density

Effective two-body NN interaction:

$$
v(\vec{r}_1, \vec{r}_2) = \frac{1}{6} t_3 (1 + x_3 P_\sigma) \rho^\alpha \left(\frac{\vec{r}_1 + \vec{r}_2}{2}\right) \delta(\vec{r}_1 - \vec{r}_2)
$$

+
$$
(W + BP_\sigma - HP_\tau - MP_\sigma P_\tau) \frac{e^{-\mu |\vec{r}_1 - \vec{r}_2|}}{|\vec{r}_1 - \vec{r}_2|}
$$

Hartree-Fock framework

Potential energy density:

$$
H(\rho,\delta) = \frac{A_1}{2\rho_0} \rho^2 + \frac{A_2}{2\rho_0} \rho^2 \delta^2 + \frac{B}{\sigma+1} \frac{\rho^{\sigma+1}}{\rho_0^{\sigma}} (1 - x\delta^2) \qquad H = \frac{\Lambda^2}{3\pi\rho_0} (-2A_2 - C_u) + \frac{1}{\rho_0} \sum_{\tau,\tau'} C_{\tau,\tau'} \iint d^3 p d^3 p' \frac{f_{\tau}(\vec{r}, \vec{p}) f_{\tau'}(\vec{r}, \vec{p}')}{1 + (\vec{p} - \vec{p}')^2/\Lambda^2} \qquad M = \frac{\Lambda^2}{3\pi\rho_0} (A_2 + 2C_u).
$$

JX and C.M. Ko, PRC 82, 044311 (2010)

$$
t_3 = \frac{16B}{(\sigma + 1)\rho_0^{\sigma}},
$$

\n
$$
x_3 = \frac{3x - 1}{2},
$$

\n
$$
\alpha = \sigma - 1,
$$

\n
$$
\mu = \Lambda,
$$

\n
$$
W = \frac{\Lambda^2}{3\pi \rho_0} (A_1 - A_2 + C_l - C_u),
$$

\n
$$
B = \frac{\Lambda^2}{6\pi \rho_0} (-A_1 + A_2 - 4C_l + 4C_u)
$$

\n
$$
H = \frac{\Lambda^2}{3\pi \rho_0} (-2A_2 - C_u),
$$

\n
$$
M = \frac{\Lambda^2}{\rho_0} (A_2 + 2C_u).
$$

Backup 2

The cross section for the scattering of two nucleons in vacuum, from momentum states k_1 and k_2 to states k_3 and k_4 is given by

$$
\frac{d\sigma}{d\Omega} = \frac{L^3}{v_{\text{rel}}} \frac{2\pi}{\hbar} |t|^2 D_f , \qquad (2.1)
$$

Effective mass scaling of NN cross section

where
$$
L^3
$$
 is the normalization volume, v_{rel} the relative velocity,

$$
v_{\text{rel}} = \hbar |{\bf k}_1 - {\bf k}_2| / m ,
$$

\n
$$
\frac{1}{\hbar} \frac{de(k, \rho)}{dk} = \frac{\hbar k}{m} + \frac{1}{\hbar} \frac{d}{dk} U(k, \rho) \equiv \frac{\hbar k}{m^*(k, \rho)}
$$

\nthe density of final states
\n
$$
D_f = L^3 m |{\bf k}_3 - {\bf k}_4| / 32\pi^3 \hbar^2 .
$$

\n
$$
D_f' = D_f \frac{m^* [\sqrt{\frac{1}{2}(k_3^2 + k_4^2)}, \rho]}{m}
$$

the present context. Using $t' \approx t$ we obtain

and the density

$$
\frac{d\sigma'}{d\Omega} = \frac{v_{\text{rel}}}{v_{\text{rel}}'} \frac{D_f'}{D_f} \frac{d\sigma}{d\Omega}
$$
\n
$$
= \frac{|\mathbf{k}_1 - \mathbf{k}_2|}{m} \left[\left| \frac{\mathbf{k}_1}{m^*(k_1, \rho)} - \frac{\mathbf{k}_2}{m^*(k_2, \rho)} \right| \right]^{-1}
$$
\nPandharipande and Peiper
\n
$$
\times \frac{m^*[\sqrt{(k_3^2 + k_4^2)/2}, \rho]}{m} \frac{d\sigma}{d\Omega}.
$$
\n(2.9)

PHYSICAL REVIEW C, VOLUME 65, 045201

Asymmetric nuclear matter: The role of the isovector scalar channel

B. Liu,^{1,2} V. Greco,¹ V. Baran,^{1,3} M. Colonna,¹ and M. Di Toro¹ ¹Laboratorio Nazionale del Sud, Via S. Sofia 44, I-95123 Catania, Italy and University of Catania, I-95123 Catania, Italy ²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China ³NIPNE-HH, Bucharest, Romania (Received 5 October 2001; published 19 March 2002) **Langrangian** $\sigma, \omega, \rho, \delta$ 900 $\mathcal{L} = \bar{\psi} \left[i \gamma_{\mu} \partial^{\mu} - (M_N - g_{\sigma} \phi - g_{\delta} \vec{\tau} \cdot \vec{\delta}) - g_{\omega} \gamma_{\mu} \omega^{\mu} \right.$
 $-g_{\rho} \gamma^{\mu} \vec{\tau} \cdot \vec{b}_{\mu} \left] \psi + \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi - m_{\sigma}^2 \phi^2) - U(\phi) \right.$
 $+ \frac{1}{2} m_{\omega}^2 \omega_{\mu} \omega^{\mu} + \frac{1}{2} m_{\rho}^2 \vec{b}_{\mu} \cdot \vec{b}$ $\alpha = 0.5$ **Dirac effective mass**800 700 600 500 **Field equation** $m_s^2 \delta_3 = g_\delta \bar{\psi} \tau_3 \psi = g_\delta \rho_{S3}$ 400 0.0 0.5 2.0 2.5 1.0 1.5 $\rho_{\rm B}/\rho_{\rm 0}$

D.D.S. Coupland et al., arXiv:1406.4546

$$
DR(n/p) = \frac{[Y(n)/Y(p)]_{124Sn+124Sn}}{[Y(n)/Y(p)]_{112Sn+112Sn}}
$$

Still below the NSCL/MSU data no matter how the symmetry energy and effective mass splitting is adjusted.

H.Y. Kong, Y. Xia, JX*, L.W. Chen, B.A. Li, and Y.G. Ma PRC 91, 047601 (2015)

How to explain DR(n/p) data?

DR(n/p)

$$
E_{kin} = \alpha \int_0^\infty \frac{\hbar^2 k^2}{2m} n(k) k^2 dk
$$

$E_{sym}^{kin} = E_{PNM}^{kin} - E_{SNM}^{kin} < 0$				
12	...	Fermi gas	...	Fermi gas
10	Fermi gas	
0.8	Tenso +
0.9	
0.4	
0.2	
0.3	

PNM

 1.0

 k (fm 1)

1.5

 2.0

2.5

SNM

 1.0

 $k(fm^1)$

 1.5

 2.0

 0.0

 0.5

 0.5

 0.0

 0.0

(x=0, y=-115 Mev) and (x=1,y=115 MeV) have almost the same density dependence of Esym, but Usym at lower momenta is different, and the difference increases with increasing density.

JX, L.W. Chen, and B.A. Li, PRC 91, 014611 (2015)