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Motivation

Previous studies: pionic observables D.C, PRC 95, 014601 (2017)
TuQMD elliptic flow D.C. EPJA 54, 40 (2018)

Conclusions of these studies:
- pions: large dependence on the pion optical potential

- elliptic flow: need to perform experimental measurements at different energies
for n/p and n/H(or ch) elliptic flow ratios

Eventually:
- describe kaon production to constrain the symmetry energy above 2 p,

Known facts:

- probed density and relativistic effects increase with projectile energy
However:

TuQMD - relativistic kinematics

- non-relativisitc dynamics

Expected magnitude of correction: -~y =1.1 @ 400 MeV/u



Gogny inspired potential (MDI2)

momentum dependent potential MDI2

Fit:
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Sensitivity to K

3 dimensional parameter space:
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Equations of Motions
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Non-relativistic limit: V. identified with the non-relativistic potential

Pauli blocking: surface correction terms evaluated in the rest frame of
particle /, rather than in computational frame

Additionally: algorithm to select initial configurations (nuclei) with improved stability



Consequences of Relativistic Dynamics

maximum density reached stability of nucleus’s wavefunction
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Consequences of Relativistic Dynamics
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Directed Flow

Au+Au @ 400 MeV/u
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E"iptic FlOW Au+Au @ 400 MeV/u
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E"iptic FlOW Au+Au @ 400 MeV/u
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E"iptic FlOW Au+Au @ 400 MeV/u
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Energy Dependence
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Symmeiry Energy Constraint

1 free parameter (cMDI2)
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2 free parameters ( full MDI2) — extract both L and Keym

non-relativistic dynamics (K=245 MeV) relativistic corrections included (K=280 MeV)
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Conclusions

First results with a QMD transport model that accounts for relativistic dynamics
effects in the meanfield propagation.

Failure to include these effects — spurious density dependence of symmetry energy

Relativistic dynamics — sizable impact on flows, increasing
with impact energy (directed, elliptic flow)

— need to readjust model parameters

— qualitative approach: tune compressibility
modulus to reproduce magnitude of flows

— reasonable description at 400 MeV/u;
insufficient in the region 1 GeV/u.

Symmetry Energy Constraints: compatible with the non-relativistic dynamics model

However: less sensitivity towards stiffer asy-EoS
non-negligible sensitivity to the compressibility modulus
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