An application of 500 Msps FADC DAQ system to the NSCL LANA Detector

Lee Jong-won, Korea Univ. Sep. 9th, 10:00-10:20

NSCL e14030, e15190 experiment

2

Target

- 1. Measure n/p ratio and momentum in neuclear reaction.
- 2. LANA (Large Area Neutron Array)
 - 1. Liquid scintillator
 - 2. Neutron detector
 - 3. TOF, PSD(pulse shape discrimination)
- 3. VW : Veto charged particle for LANA
- 4. HiRA(High Resolution Array)
 - 1. Si-CsI detector
 - 2. dE/dx(Si strip) vs Total E(CsI)
- 5. micro-Ball
 - 1. Small scintillator + pmt
 - 2. Measure multiplicity
- 6. FA(Forward Array) : Measure event timing

Neutron detection in LANA

In case of LANA, PSD is measured by two ADCs with different gate width.

How about using FADC to record whole waveform?

500 Msps FADC DAQ system

Developed for LAMPS experiment
 TCB: Trigger control, Clock distribution
 FADC : Data measure and transfer
 Data readout : USB3 or Optical Link

Basic performances of LAMPS FADC DAQ system

Manufacturer	Notice Korea Co.		
Sampling speed	500 Msps (2 ns interval)		
Maximum Trigger rate	upto 500 kHz		
Recording length	128 ns ~ 32 us		
Maximum Data transfer speed	5 gbps for 4 ch (USB3.0 or optical Link)		
Dynamic range	2V, offset adjustable (-2 to 0 V, \sim 0 to 2 V)		
Resolution	12 bit		
ADC zitter	less than LSB (0.5 mV)		
Timing resolution	< 40 ps		

NSCL LANA detector

5. NE-213 liquid scintillator

DATA status

Beam intensity : 1 nA Trigger : LANA + micro-Ball

Beam Particle	Target	Trig. rate	Data throughput
48Ca 140 MeV/u	64Ni	2.5 k	7 MB/s
48Ca 140 MeV/u	58Ni	2.3 k	7.0 MB/s
48Ca 140 MeV/u	112Sn	2.5 k	7.5 MB/s
48Ca 140 MeV/u	124Sn	2.7 k	7.4 MB/s
Cosmic (self)	_	22 k	13 MB/s

Total raw data size: 4.6 TB

Problem is...

1.How to matching data sets from independent DAQs.2.Waveform analysis and checking performance of FADC DAQ

Event matching

Two data sets with different timestamp types

How to matching initial data, and to confirm data was sychronized event by event?

Event matching method

 $T_F(i)$: FADC timestamp of i–th event (1 ns unit) $T_N(i)$: Clock timestamp of i–th event (2 us unit)

Two data set were matched each other

Compare two DAQs' data - waveform analysis

Checking matched data-QDC

Compared QDC value from commercial QDC and FADC QDC values were coincided each other less than 5% when QDC was larger than 400 count

Checking matched data-Timing data

Checking matched data-Timing data

 Δ_x vs Geo. Mean ADC

Charge and timing data from FADC is good enough to use.

Measured data

Beam :140MeV ⁴⁸Ca 140 MeV Target:⁶⁴Ni

FADC for PSD - Amplified channel

PSD vs TOF (Neutral),w/ amp)

PSD vs TOF (Charged,w/ amp)

We confirmed gammas and low energy neutrons can be distinguish with PSD value 0.9.

Summary

- We tested new FADC DAQ system with full size (112 channel) at NSCL and confirmed it worked same performance with the commercial DAQs.
- We took data from nuclear interaction experiment, and confirmed data was successfully reconctructed.

Thanks.

Large-Acceptance Multi-purpose Spectrometer experiment at RAON

Experiment for symmetry energy **TPC** for charged particle measurements **Neutron detector array** for neutron measurements Functions and Characteristics of FADC DAQ system

-Digital delay applied for each channel independently Ring buffer : 64 kB (= 64 us)

Delay cables can be omitted. \rightarrow Simple setup

. . .

Functions and Characteristics of FADC DAQ system

record whole points in recording length

DAQ setup (1) – PC and FADC

Typical Waveform

1. DAQ PC

- 32 thread cpu + 32 GB memory

 (Avg. CPU usage during data taking : 15%)
- 2. $4 \ge 7$ port USB3 pci card
- 3. 4 x 6 TB HDD for waveform data, 2 x 2 TB HDD for tcb data, 1 240 GB SSD for event building
- 2. FADC
 - 1. Total 97 Channel : 96 (LANA) + 1 (FA)
 - 2. Estimated data throughput ($1 \sim 10$ kHz, Recording length : 480 ns)
 - 1. $1 \sim 10$ MB/sec with zero suppression => <u>Set zero suppression</u>.
 - 2. 96 \sim 960 MB/sec without zero suppression (Unabailable)
 - 3. Recording length : 480 ns
 - 1. Width of waveform : 200 ns
 - 2. Time of flight diffrence : 100 ns
 - 3. Timing diffrence between two walls : 15 ns
 - 4. Zero suppression threshold : 5 mV for low energy events

DAQ setup (2) – DAQ program FADC DAQ–Ordinary Notice version

- 1. Single process
- 2. Loop for sequential data readout for TCB and FADCs

=> By increasing number of FADC boards and recorded data size per second, the processing bottle neck is generated in the program and recoring HDD

3. 1~10 MB/s ($2.6 \sim 26$ TB for 30 days)

Multi-process DAQ program Many Large HDD are required

DAQ setup (3) – DAQ program FADC DAQ–Multi process version

Data selection

Common waveform of gamma and neutron/charged

Integral test

CH2

Difference

