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neutron-rich nuclei and neutron matter: a strong correlation
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FIG. 3. The derivative of the neutron EOS at rn !
0.10 neutron!fm3 (in units of MeV fm3!neutron) vs the S value
in 208Pb for 18 Skyrme parameter sets. The cross is SkX.

provided by Wiringa, Fiks, and Fabrocini [17] and Akmal
and Pandharipande [18]. Generally the agreement with FP
is good up to about rn ! 0.10 neutron!fm3. At higher
density the differences in the various NN potentials [17]
and the very uncertain NNN potential become important.
Thus, although the FP neutron EOS serves as a reasonable
starting point, we do not have a truly fundamental theory
for neutron EOS. Any constraints coming from the prop-
erties of nuclei such as the neutron radii are extremely
important.

Given the difficulty of the JLAB measurement, it is
important to know to what extent a measurement of S
in one nucleus such as 208Pb will be applicable to other
nuclei. There are two points to investigate: the dependence
of S on mass and the dependence of S on the asymmetry
in the Fermi energy for protons and neutrons. For the first
case, I compare in Fig. 4 the S values for two nuclei near
the valley of stability (where the Fermi energies for protons
and neutrons are about equal to each other), those for 208Pb
and 138Ba. One observes a nearly linear relationship which
starts at S ! 0. For the second case, I compare in the
same figure the S value in 208Pb to the S value for 132Sn
where the neutrons at the Fermi surface are bound about
8 MeV less than the protons (see Figs. 4 and 5 in Ref. [6]).
Again there is a tight correlation, but the asymmetry in
the Fermi energy produces a systematic increase in the
neutron skin for all of the 18 SHF parameter sets. Thus
there are two clear mechanisms for producing a neutron
skin. One which is related to the asymmetry in the Fermi
energy is well determined within SHF, and another which
depends on the neutron EOS is undetermined unless one
adds a constraint to the neutron EOS. It is the Fermi-
energy asymmetry effect which dominates the increase in
the matter radii of neutron-rich light nuclei such as in the
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FIG. 4. The S value for 208Pb vs the S values for 132Sn (filled
circles) and 138Ba (plusses) for 18 Skyrme parameter sets. The
horizontal line is the SkX value for 208Pb.

Na isotopes [11]. Thus it is most important to accurately
determine the neutron rms radius in a stable nucleus such
as 208Pb. The neutron rms radius of 208Pb will provide
an important new constraint on the neutron EOS models
which are used to calculate the properties of neutron stars
[17]. The results discussed here are based upon a wide
variety of parametrizations for the Skyrme Hartree-Fock
model for finite nuclei and nucleon matter. It will be
important to explore the generality of these conclusions
within the Skyrme model as well as in other mean-field
models.

This work was stimulated by discussions with Chuck
Horowitz and Dick Furnstahl during the ECT workshop
on “Parity Violation in Atomic, Nuclear and Hadronic Sys-
tems” which was held in Trento, Italy, June 5–16 (2000).
Support for this work was provided by the U.S. National
Science Foundation Grant No. PHY-0070911.
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provided by Wiringa, Fiks, and Fabrocini [17] and Akmal
and Pandharipande [18]. Generally the agreement with FP
is good up to about rn ! 0.10 neutron!fm3. At higher
density the differences in the various NN potentials [17]
and the very uncertain NNN potential become important.
Thus, although the FP neutron EOS serves as a reasonable
starting point, we do not have a truly fundamental theory
for neutron EOS. Any constraints coming from the prop-
erties of nuclei such as the neutron radii are extremely
important.

Given the difficulty of the JLAB measurement, it is
important to know to what extent a measurement of S
in one nucleus such as 208Pb will be applicable to other
nuclei. There are two points to investigate: the dependence
of S on mass and the dependence of S on the asymmetry
in the Fermi energy for protons and neutrons. For the first
case, I compare in Fig. 4 the S values for two nuclei near
the valley of stability (where the Fermi energies for protons
and neutrons are about equal to each other), those for 208Pb
and 138Ba. One observes a nearly linear relationship which
starts at S ! 0. For the second case, I compare in the
same figure the S value in 208Pb to the S value for 132Sn
where the neutrons at the Fermi surface are bound about
8 MeV less than the protons (see Figs. 4 and 5 in Ref. [6]).
Again there is a tight correlation, but the asymmetry in
the Fermi energy produces a systematic increase in the
neutron skin for all of the 18 SHF parameter sets. Thus
there are two clear mechanisms for producing a neutron
skin. One which is related to the asymmetry in the Fermi
energy is well determined within SHF, and another which
depends on the neutron EOS is undetermined unless one
adds a constraint to the neutron EOS. It is the Fermi-
energy asymmetry effect which dominates the increase in
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Na isotopes [11]. Thus it is most important to accurately
determine the neutron rms radius in a stable nucleus such
as 208Pb. The neutron rms radius of 208Pb will provide
an important new constraint on the neutron EOS models
which are used to calculate the properties of neutron stars
[17]. The results discussed here are based upon a wide
variety of parametrizations for the Skyrme Hartree-Fock
model for finite nuclei and nucleon matter. It will be
important to explore the generality of these conclusions
within the Skyrme model as well as in other mean-field
models.
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★ Predict the symmetry energy from 
first principles

★ Pinning saturation point is not 
enough for reasonable 
predictions

★ Acceptable results for the liquid-
gas critical temperature 

★ Correlations between Esat and Tc

★ Thermal effects are important for 
astro EoS
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Thank you for your attention!
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energy tails affected by the cutoff on the NN 
force 

high-momentum region also affected by cutoff 
and density dependence 

effects clearly visible in momentum distribution

Microscopic properties according to different Hamiltonians
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N4LO

Why nuclear matter from chiral EFT?

Epelbaum et al., Rev. Mod. Phys. 81, 1773(2009) 
Machleidt et al., Phys. Rep. 503, 1 (2011)Power counting

2003 
2005

1994 
2002

2013 
2015

2015

2007 
2008 
2011

2006 
2007

Over 20 years of 
ongoing improvement

2012

low-energy 
constants

 16

Effective theory of QCD  

Nucleons & pions as d.o.f. 

Power counting expansion 

Hierarchy of many-body forces 

Theoretical uncertainties
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Many-body methods comparison

Pure neutron matter

Remarkable agreement between 
several many-body methods and 

different Hamiltonians

Hebeler et al., Ann. Rev. Nucl. Part. Sci. 65, 457 (2015)
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Many-body perturbation theory
Self-consistent Green’s functions

Agreement up to 0.20 fm-3 with the use of 
different Hamiltonians 
Questionable validity of chiral EFT

Carbone, Rios, Polls, PRC  90, 054322 (2014)

Low-density neutron matter perturbative
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= +Σ⋆

T

3. calculate self-energy distinguishing the effective terms, correct diagrams counting:

Extended SCGF approach 

+
1
4

GII

=

Interaction

1. define effective interactions to include correctly 3B terms, dressed normal ordering:

2. calculate T-matrix with effective 2B term, modified ladder approximation:

2B 2B + 3B

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

T-matrix

Self-energy =Σ⋆

T
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= + Σ⋆
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E

A
=

�

⇤

Z
d3p

(2⇥)3

Z
d⌅

2⇥

1

2

⇢
p2

2m
+ ⌅

�
A(p,⌅)f(⌅)� 1

2
⇥�N |Ŵ |�N ⇤

Define a new sum rule 

Galitskii-Migdal-Koltun sumrule modified:

EN = ��N |Ĥ|�N ⇥ = ��N |T̂ |�N ⇥+ ��N |V̂ |�N ⇥+ ��N |Ŵ |�N ⇥

GII
GIII

X

↵

Z EN�EN�1

�1
d! !

1

⇡
ImG↵↵(!) = h N |T̂ | N i+ 2h N |V̂ | N i+ 3h N |Ŵ | N i

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)
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Plot of pressure of PNM (to compare with Tsang, Danielewicz 
paper 2018) 

Plot of symmetry energy as T-dependance 

slide with diagrams and formula of GMK sumrule 

figure of pnm with many approaches

Backup
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