Ab initio **studies of infinite matter from a Green's function approach**

process path…

Unstable nuclei

NuSYM2018 - Busan, South Korea - 13 September 2018

neutron

stars

Arianna Carbone

Predicting the symmetry energy from saturating potentials

process path…

Unstable nuclei

NuSYM2018 - Busan, South Korea - 13 September 2018

neutron

stars

Arianna Carbone

Solve the nuclear many-body problem from first principles

Build reliable methods with predictive power \bigcirc

Solve the nuclear many-body problem from first principles

Build reliable methods with predictive power \bigcirc

Probe the limits of the nuclear landscape \bigcirc

Solve the nuclear many-body problem from first principles

- Build reliable methods with predictive power \bigcirc
- Probe the limits of the nuclear landscape \bigcirc
- Constrain the EOS of neutron star matter \bigcirc

Solve the nuclear many-body problem from first principles

- Build reliable methods with predictive power \bigcirc
- Probe the limits of the nuclear landscape \bigcirc
- Constrain the EOS of neutron star matter \bigcirc

FIG. 3. The derivative of the neutron EOS at r*ⁿ* ! slope of EoS

neutron-rich nuclei and neutron matter: a strong correlation

Solve the nuclear many-body problem from first principles

- Build reliable methods with predictive power \bigcirc
- Probe the limits of the nuclear landscape \bigcirc
- Constrain the EOS of neutron star matter \bigcirc

provided by Wiringa, Fiks, and Fabrocini [17] and Akmal

The self-consistent Green's function method

Green's function: a tool to solve the nuclear many-body problem; nonperturbative, correlations beyond mean field

Dickhoff & Barbieri, PPNP 52 (2004) 377 Carbone, Cipollone, Barbieri, Rios, Polls*,* PRC **88**, 054326 (2013)

The self-consistent Green's function method

Green's function: a tool to solve the nuclear many-body problem; nonperturbative, correlations beyond mean field

Dickhoff & Barbieri, PPNP 52 (2004) 377 Carbone, Cipollone, Barbieri, Rios, Polls*,* PRC **88**, 054326 (2013)

Carbone, Rios, Polls*,* PRC 88, 044302 (2013)

Improved prediction of saturation density

Carbone, Rios, Polls*,* PRC 90, 054322 (2014)

momentum energy Single-nucleon spectral function

 \bigcirc

The self-consistent Green's function method

Saturation point according to different Hamiltonians

Carbone *(in preparation)*

Theoretical uncertainty band

based on the nuclear hamiltonian

Saturation point according to different Hamiltonians

Carbone *(in preparation)*

Saturation point according to different Hamiltonians

Carbone *(in preparation)*

From microscopic… to macroscopic **Symmetric nuclear matter**

Carbone *(in preparation)*

The microscopic picture: momentum distribution

N2LOsat high-momentum states \bigcirc

From microscopic… to macroscopic **Symmetric nuclear matter**

Carbone *(in preparation)*

The microscopic picture: momentum distribution

N2LOsat high-momentum states \bigcirc

From microscopic... to macroscopic The Contract of Mexico **Symmetric nuclear matter**

Carbone *(in preparation)*

From microscopic… to macroscopic **Pure neutron matter**

Carbone *(in preparation)*

N2LOsat high-momentum states \bigcirc

From microscopic… to macroscopic **Pure neutron matter**

Carbone *(in preparation)*

The microscopic picture: momentum distribution

N2LOsat high-momentum states \bigcirc

From microscopic… to macroscopic **Pure neutron matter**

Carbone *(in preparation)*

Predictions for the Symmetry Energy and slope L

Carbone *(in preparation)*

Density, ρ [fm⁻³]

Predictions for the Symmetry Energy and slope L

Carbone *(in preparation)*

Predictions for the Symmetry Energy and slope L

Carbone *(in preparation)*

2N N2LOopt + 3N N2LO

Carbone, Polls, Rios PRC 98 025804 (2018)

increasing temperature

increasing temperature

2N N2LOopt + 3N N2LO

Carbone, Polls, Rios PRC 98 025804 (2018)

increasing temperature

increasing temperature

2N N3LO EM500 (SRG L=2.0fm-1)+ 3N N2LO (L=2.0fm-1) 2N N3LO EM500 (SRG L=2.0fm-1)+ 3N N2LO (L=2.5m-1) 2N N3LO EM500 (SRG L=2.8fm-1)+ 3N N2LO (L=2.0fm-1) N2LOsat 2N + 3N 2N N2LOopt + 3N N2LO

Carbone, Polls, Rios PRC 98 025804 (2018)

increasing temperature

increasing temperature

 $\overline{9}$

The liquid-gas phase transition and critical point

Carbone, Polls, Rios PRC 98 025804 (2018)

- Coexistence line: equilibrium between a gas and a liquid phase \bigcirc
- Predicted critical temperature \sim T= \sim [15-19] MeV (experimental \sim [15-20] MeV) \bigcirc
- Previous consistent results from Wellenhofer et al., PRC 89,064009 (2014)

Arianna Carbone – Predicting the symmetry energy from saturating potentials – 13th September 2018

The saturation energy vs the critical temperature

Carbone, Polls, Rios PRC 98 025804 (2018)

The saturation energy vs the critical temperature

Carbone, Polls, Rios PRC 98 025804 (2018)

$$
P_{\text{cold}} + \sqrt{P_{\text{thermal}} - P_{\text{th}}} = (\Gamma_{\text{th}} - 1)\rho E_{\text{th}}
$$
 Constant value

Astrophysical EoS

Carbone & Schwenk *(in preparation)*

$$
P_{\text{cold}} + \underbrace{P_{\text{thermal}}}_{\text{Astrophysical EoS}} - P_{\text{th}} = \underbrace{(\Gamma_{\text{th}} - 1)\rho E_{\text{th}}}_{\text{Fth}} \quad \text{E}_{\text{th}} = E(T) - E_0
$$
\n
$$
P_{\text{th}} = P(T) - E_0
$$
\n
$$
P_{\text{th}} = P(T) - E_0
$$

Carbone & Schwenk *(in preparation)*

Arianna Carbone – Predicting the symmetry energy from saturating potentials – 13th September 2018

★ Predict the symmetry energy from first principles

- ★ Predict the symmetry energy from first principles
- ★ Pinning saturation point is not enough for reasonable predictions 0 0,08 0,16 0,24 0,32

- ★ Predict the symmetry energy from first principles
- ★ Pinning saturation point is not enough for reasonable predictions
- ★ Acceptable results for the liquidgas critical temperature

- ★ Predict the symmetry energy from first principles
- ★ Pinning saturation point is not enough for reasonable predictions
- ★ Acceptable results for the liquidgas critical temperature
- ★ Correlations between Esat and Tc

- ★ Predict the symmetry energy from first principles
- ★ Pinning saturation point is not enough for reasonable predictions
- ★ Acceptable results for the liquidgas critical temperature
- ★ Correlations between Esat and Tc
- ★ Thermal effects are important for astro EoS

- ★ Predict the symmetry energy from first principles
- ★ Pinning saturation point is not enough for reasonable predictions
- ★ Acceptable results for the liquidgas critical temperature
- ★ Correlations between Esat and Tc C. Drischler, P. Klos, UNIVERSITÄT **DARMSTADT** K. Hebeler, A. Schwenk \star The university of \star and \star and \star and \star and \star A. Rios as C. Barbieri A. Polls Universitat de Barcelona

Backup

Microscopic properties according to different Hamiltonians

- energy tails affected by the cutoff on the NN \bigcirc force
- high-momentum region also affected by cutoff \bigcirc and density dependence
- \bullet effects clearly visible in momentum distribution

Microscopic properties according to different Hamiltonians

Why nuclear matter from chiral EFT?

Many-body methods comparison **Pure neutron matter**

Remarkable agreement between several many-body methods and different Hamiltonians

Hebeler *et al.,* Ann. Rev. Nucl. Part. Sci. 65, 457 (2015)

Low-density neutron matter perturbative

Carbone, Rios, Polls*,* PRC 90, 054322 (2014)

- Agreement up to 0.20 fm-3 with the use of \bigcirc different Hamiltonians
- Questionable validity of chiral EFT

Extended SCGF approach $=$ \blacklozenge + $\big(\Sigma^{\star}$ Carbone, Cipollone, Barbieri, Rios, Polls*,* PRC **88**, 054326 (2013) **2B 2B + 3B 1.** define **effective interactions** to include correctly 3B terms, **dressed normal ordering**: $+\frac{1}{4}$ $=$ \bullet ---- \bigcup + $\frac{1}{4}$ Interaction G_{II} **2.** calculate T-matrix with effective 2B term, **modified ladder approximation**: $T = \bullet \dots \bullet + \begin{matrix} T & T \\ T & T \end{matrix}$ = $\bullet \mathcal{N} \mathcal{N} \bullet + \begin{matrix} N \mathcal{N} \mathcal{N} \\ T & T \end{matrix}$ T-matrix

3. calculate self-energy distinguishing the effective terms, **correct diagrams counting**:

 Σ^* = $\bigwedge^* \Lambda \times +$

T

Define a new sum rule

Carbone, Cipollone, Barbieri, Rios, Polls*,* PRC **88**, 054326 (2013)

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle + \langle \Psi^N | \hat{W} | \Psi^N \rangle
$$

Galitskii-Migdal-Koltun sumrule modified:

$$
\sum_{\alpha}\int_{-\infty}^{E^N-E^{N-1}}\mathrm{d}\omega\,\omega\frac{1}{\pi} \mathrm{Im}\,G_{\alpha\alpha}(\omega) = \langle\Psi^N|\hat{T}|\Psi^N\rangle + 2\langle\Psi^N|\hat{V}|\Psi^N\rangle + 3\langle\Psi^N|\hat{W}|\Psi^N\rangle
$$

$$
\frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \frac{1}{2} \left\{ \frac{p^2}{2m} + \omega \right\} \mathcal{A}(p,\omega) f(\omega) - \frac{1}{2} \langle \Psi^N | \hat{W} | \Psi^N \rangle
$$

Define a new sum rule

Carbone, Cipollone, Barbieri, Rios, Polls*,* PRC **88**, 054326 (2013)

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \underbrace{\langle \Psi^N | \hat{T} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{V} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W} | \Psi^N \rangle \hspace{-0.1cm} + \hspace{-0.1cm} \langle \Psi^N | \hat{W
$$

Galitskii-Migdal-Koltun sumrule modified: \bigcirc

$$
\begin{equation*} \sum_{\alpha} \int_{-\infty}^{E^N - E^{N-1}} \mathrm{d}\omega \, \omega \frac{1}{\pi} \mathrm{Im} \, G_{\alpha \alpha}(\omega) = \sqrt{\Psi^N |\hat{T}| \Psi^N} \sqrt{2} \Psi^N |\hat{V}| \Psi^N \rangle + \sqrt{3} \Psi^N |\hat{W}| \Psi^N \rangle \\ \hline \hline \frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \sqrt{\frac{p^2}{2m}} + \omega \frac{\lambda}{\rho} \mathcal{A}(p, \omega) f(\omega) - \frac{1}{2} \Psi^N |\hat{W}| \Psi^N \rangle \end{equation*}
$$

- Plot of pressure of PNM (to compare with Tsang, Danielewicz paper 2018)
- Plot of symmetry energy as T-dependance
- slide with diagrams and formula of GMK sumrule
- figure of pnm with many approaches