From homogeneous matter to finite nuclei: KIDS functional

Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea

A rendering of the future RAON complex, under construction in Daejeon

Chang Ho Hyun, Daegu University

- ✤ <u>Tae-Sun Park</u>, SKKU
- Yeunhwan Lim, IBS (now in Texas)
 - Korea
 - IBS (that's me and YHL)
 - Daegu
 - SKKU

(1398) (1398) 성군관대학교 SUNG KYUN KWAN UNIVERSITY

Hana Gil, Kyungpook National University

Yongseok Oh, Kyungpook National University

Gilho Ahn, University of Athens, Greece

✤ Young-Min Kim (UNIST) ...

KIDS sales pitch

-RAON

✤ Give KIDS any T=0 EoS you want to test or apply:

- In terms of {p₀,E₀,K₀},{J,L,K_{sym},Q_{sym}}, e.g., for your sensitivity studies, or from new constraints
- In the form of pseudodata from ab initio calculations (xEFT, APR, ...)
- m_s^* , m_v^* , Q_0 , if you wish
- We can reverse-engineer a Skyrme "interaction" which reproduces that EoS
- And can then test it directly in
 - Nuclear structure (Skyrme-Hartree-Fock)
 - Giant/pygmy resonances (RPA)

Introduction

KIDS functional:

- Natural Ansatz + Skyrme formalism
- Fits to APR: KIDS-ad2 set
- Successful application to nuclei
- Effective mass parameters remain free
- Proof of principle: From APR straight to nuclei
- Symmetry energy and KIDS functional
 - Freedom to vary all parameters at will
 - Relevance of skewness parameter Q_{sym}

Summary

My interests and motivation

Skyrme-type interaction and EDF

$$V_{\text{Skyrme}} = t_{0}(1 + x_{0}P_{x})\delta(\mathbf{r}_{i} - \mathbf{r}_{j}) + \frac{1}{2}t_{1}(1 + x_{1}P_{x})\{p_{12}^{2}\delta(\mathbf{r}_{i} - \mathbf{r}_{j}) + \delta(\mathbf{r}_{i} - \mathbf{r}_{j})p_{12}^{2}\} + t_{2}(1 + x_{2}P_{x})p_{12} \cdot \delta(\mathbf{r}_{i} - \mathbf{r}_{j})p_{12} + \frac{1}{6}t_{3}(1 + x_{3}P_{x})\rho^{\alpha}(\mathbf{\ddot{r}})\delta(\mathbf{r}_{i} - \mathbf{r}_{j}) + \frac{1}{12}t_{2}(1 + x_{3}P_{x})\rho^{\alpha}(\mathbf{\ddot{r}})\delta(\mathbf{r}_{i} - \mathbf{r}_{j}) + \frac{1}{12}t_{2}(1 + x_{3}P_{x})\rho^{\alpha}(\mathbf{\ddot{r}})\delta(\mathbf{r}_{i} - \mathbf{r}_{j}) + \frac{1}{12}t_{2}(1 + \frac{1}{2}x_{0})\rho^{2} - \frac{1}{2}t_{2}(\frac{1}{2} + x_{0})\sum_{q}\rho_{q}^{2} + \frac{1}{12}t_{3}(1 + \frac{1}{2}x_{3})\rho^{\alpha+2} - \frac{1}{12}t_{3}(\frac{1}{2} + x_{3})\rho^{\alpha}\sum_{q}\rho_{q}^{2} + \frac{1}{4}[t_{1}(1 + \frac{1}{2}x_{1}) + t_{2}(1 + \frac{1}{2}x_{2})]\rho^{\alpha}\tau_{q} + \frac{1}{4}[t_{1}(1 + \frac{1}{2}x_{1}) - t_{2}(1 + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\tau_{q} + \frac{1}{4}[t_{1}(\frac{1}{2} + x_{1}) - t_{2}(1 + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(\frac{1}{2} + \frac{1}{2}x_{1}) - t_{2}(1 + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(1(\frac{1}{2} + \frac{1}{2}x_{1}) - t_{2}(1 + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(1(\frac{1}{2} + \frac{1}{2}x_{1}) - t_{2}(1 + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(1(\frac{1}{2} + \frac{1}{2}x_{1}) + t_{2}(\frac{1}{2} + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(1(\frac{1}{2} + \frac{1}{2}x_{1}) + t_{2}(\frac{1}{2} + \frac{1}{2}x_{2})]\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(1(\frac{1}{2} + \frac{1}{2}x_{1}) + t_{2}(\frac{1}{2} + \frac{1}{2}x_{2})\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(1(\frac{1}{2} + \frac{1}{2}x_{1}) + t_{2}(\frac{1}{2} + \frac{1}{2}x_{2})\rho^{\alpha}\rho_{q}\nabla^{2}\rho_{q} + \frac{1}{6}t_{3}(\frac{1}{2} + \frac{1}{2}t_{4}\rho^{\alpha}\nabla J_{q}]\right\},$$
(2.6)

Phenomenological energy-density functionals

Hundreds of EDF models for nuclei and nuclear matter

- Typically ~10 parameters fitted to nuclear properties using different data sets and fitting protocols
- Very different predictions below and above ρ₀
- Very different predictions at large isospin asymmetries
 - [cf Dutra et al., PRC85(2012)035201]

Phenomenological energy-density functionals

Only few of the hundreds of EDF models can simultan eously describe nuclear matter and finite nuclei

[M.Dutra et al., PRC85(2012)035201; P.D.Stevenson et al., AIP Conf.Proc.1529,262]

Spurious correlations among parameters (e.g., K₀,m*)

... while binding energies and radii "prefer" different values for the effective mass

[M.Bender et al., Rev. Mod. Phys. 75,121

Not satisfactory!

If an EoS is "realistic", it should be able to correspond to nucler properties by definition

NUCLEAR ENERGY DENSITY FUNCTIONAL FOR KIDS

- Natural Ansatz for energy density inspired by QMBT / EFT
- Convenient Skyrme formalism for nuclei

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

- If I have SNM and PNM, namely c_i(0) and c_i(1) (plus the quadratic approximation) I obtain analytically: {ρ₀,E₀,K₀,Q₀},{J,L,K_{sym},Q_{sym}}
- And vice versa; or I can fit to SNM/PNM pseudodata
- First, a few words on:
 - Motivation for Ansatz
 - Why 4 terms? Why low order?

for details: PP,Park,Lim,Hyun,Phys. Rev. C 97,014312 (2018)

RAON

Fetter and Walecka, "Quantum theory of many-particle systems"

- Realistic potential: strong repulsive core plus attraction at longer range
- Apply Brueckner methodology in the calculation of nuclear matter energy
- → Result: k_F^2 , k_F^3 , k_F^4 , k_F^5 , k_F^6 , ..., converging
 - Even powers: from repulsive part
 - Odd powers: from both
- →The Fermi momentum is the relevant variable : powers of p^{1/3}

Saturation density is low...

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

- with respect to (effective) boson exchange range (?)
 - one-pion exchange: vanishing expectation value
 - next boson: rho with m_o~775MeV~4fm⁻¹
- Effective Lagrangian in powers of k_F/m_p
- Expansion of E/A in powers of k_F
 - > ... which means, again, powers of $\rho^{1/3}$
 - > The Fermi momentum as the relevant variable
 - k_F³ and k_F⁴ (i.e., coupling~p^{1/3}) known to be important for obtaining saturation [Kaiser et al.,NPA697(2002)]
- Dilute Fermi gas: plus logarithmic terms

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Natural Ansatz for potential energy: powers of $k_F \sim \rho^{1/3}$ But how many powers? Which are relevant?

- Fit to homogeneous matter pseudodata
 - Variational Monte Carlo (APR, FP)
- Statistical analysis of fit quality; naturalness
- Keep only the important terms! No overtraining

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

SNM: 3 terms suffice in converging hierarchy (c₃(0)=0)
 PNM: 4 terms necessary (*different preferences*)

Nuclear energy density functional for KIDS

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Rare Isotope Science Preject

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Natural Ansatz for potential energy: powers of $k_F \sim \rho^{1/3}$ But how many powers? Which are relevant?

- Fit to homogeneous matter pseudodata
 - Variational Monte Carlo (APR, FP)
- Statistical analysis of fit quality; naturalness
- Keep only the important terms! No overtraining

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

□ SNM: 3 terms suffice in converging hierarchy ($c_3(0)=0$)

PNM: 4 terms necessary (*different preferences*)

~RAON

Symmetric nuclear matter:

- Set ρ_0 =0.16 fm -3, E₀=-16MeV, K₀ = 240 MeV
- Determine c_{0,1,2}(0) (analytical expressions)
- Leads to Q₀=-373 MeV
- Pure neutron matter:
 - Fit c_{0,1,2,3}(1) to the APR pseudodata for PNM
 - Resulting symmetry-energy parameters:

J=33MeV, L=49MeV, K_{sym} =-157MeV, Q_{sym} =586MeV

Interpolations and extrapolations

Calculations with chiral interactions reproduced, although they were not used for fitting

Comparisons with other models

Comparisons with other models

PROOF OF PRINCIPLE: APR TAKEN TO NUCLEI

Skyrme parameters by reverse engineering

$$v_{i,j} = (t_0 + y_0 P_{\sigma})\delta(r_{ij}) + \frac{1}{2}(t_1 + y_1 P_{\sigma})[\delta(r_{ij})k^2 + \text{h.c.}] + (t_2 + y_2 P_{\sigma})k' \cdot \delta(r_{ij})k + iW_0 k' \times \delta(r_{ij}) k \cdot (\sigma_i - \sigma_j) + \frac{1}{6}\sum_{n=1}^{3} (t_{3n} + y_{3n} P_{\sigma})\rho^{n/3}\delta(r_{ij}), \qquad (3)$$

$$\begin{split} t_0 &= \frac{8}{3} c_0(0) \,, \quad y_0 = \frac{8}{3} c_0(0) - 4 c_0(1) \,, \\ t_{3n} &= 16 c_n(0) \,, \quad y_{3n} = 16 c_n(0) - 24 c_n(1) \,, \quad (n \neq 2) \\ t_{32} &= 16 c_2(0) - \frac{3}{5} \left(\frac{3}{2} \pi^2\right)^{2/3} \theta_s \,, \\ y_{32} &= 16 c_2(0) - 24 c_2(1) + \frac{3}{5} (3\pi^2)^{2/3} \left(3\theta_\mu - \frac{\theta_s}{2^{2/3}}\right) \\ \text{with} \end{split}$$

$$\begin{array}{c} \theta_s \equiv 3t_1 + 5t_2 + 4y_2 \,, \quad \theta_\mu \equiv t_1 + 3t_2 - y_1 + 3y_2 \,. \end{array}$$

unconstrained from homogenous matter \rightarrow vary freely But the total $c_2(0)$, $c_2(1)$ will remain unchanged!

For given KIDS functional $c_i(0)$, $c_i(1)$ (i.e., fixed SNM, PNM)

- Chose effective masses (vary at will)
- $AII t_i$, y_i are now known except t_1, t_2, x_1, x_2
- The two combinations θ_s, θ_μ also known (eff. masses)

Two independent free parameters plus spin-orbit W₀

- Fit only to ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb
- Only bulk properties: E/A, charge radius: 6 data

Binding energy, charge radii

Neutron skin thickness

KIDS-ad2: Predictions for ⁶⁸Ni (not fitted)

^[*] for m*/m=1.0~0.7:8.68794; 8.68176; 8.68838; 8.68912 MeV ^[**] a_D measurementT.Aumann and D.Rossi, private communication

CAON

Theoretical studies within Skyrme and covariant density functional theory:

- a_D correlated with neutron skin thickness
- and with symmery energy and its density dependence

PDR: no correlation

- For given immutable EoS (no refitting), a Skyrme-type functional can easily be reverseengineered
- Bulk, static properties: practically independent of the effective mass!
 - We can vary EoS parameters and m* independently and examine effect on observables
- So far I showed results with KIDS-ad2 based on APR. Next: An exploration of symmetryenergy parameters

EXPLORING THE SYMMETRY ENERGY PARAMETERS

Curvature K_{sym} and skewness Q_{sym}

R. Sellahewa and A. Rios, Phys. Rev. C 90, 054327 (2014)

RAON

Symmetric nuclear matter:

- { ρ_0 , E₀, K₀} \rightarrow 3x3 system \rightarrow { $c_i(0)$; i=0,1,2; c₃(0)=0}
- Feasible but unnecessary:
- ∘ { ρ_0 , E_0 , $K_{0,}$ Q_0 } →4x4 system → { $c_i(0)$; i=0,1,2,3}
- Symmetry energy:
 - {J, L, K_{sym}, Q_{sym}} → 4x4 system → {[c_i(1)-c_i(0)]; i=0,1,2,3

Let us keep SNM, J, L, K_{sym} steady and equal to the KIDS-ad2 values; vary Q_{sym} ; and solve for $c_i(1)$

Exploring symmetry energy parameters

Dilute neutron matter

~RAON

Exploring symmetry energy parameters

ibs 기초과학연구원

-RAON

For steady (J,L) = (33,50) MeV, vary K_{sym}, Q_{sym}
 Solutions of TOV obtained for the following cases:

		${\rm Max}~{\rm Mass}({\rm M}_{\odot})$	$\mathrm{R}_{1.4}(\mathrm{km})$	$\rho_{\rm max}({\rm fm}^{-3})$
(-160,600) MeV	(I)	2.05	11.29	0.877
(-160,1000) MeV	(II)	1.92	11.70	0.615
(0,1000) MeV	(III)	1.96	12.07	0.632
(-157,586) MeV ad - 2		2.06	11.27	0.906

G.Ahn, MSc Thesis (NKUA, 2018)

Summary

℃RAON

Natural Ansatz + Skyrme formalism: KIDS functional

- 3 terms in expansion sufficient for SNM: { ρ_0 , E_0 , K_0 }
- 4 terms necessary for neutron matter and symmetry energy: {J, L, K_{sym}, Q_{sym}}
 Skyrme-type
- From fixed EoS straight to nuclei

Skyrme- type "interaction" by reverse engineering

- APR: static, bulk nuclear properties insensitive to
 - Effective-mass parameters
 - High-order parameters of symmetry energy

Flexibility to choose parameter values at will for sensitivity studies or adjust them to

- Dynamical observables (e.g., giant resonances)
- Ab initio pseudodata (polarized matter, neutron drops...)
- Astrophysical and HIC constraints

Thanks to my collaborators and contributors

• RAON

- Chang Ho Hyun, Hana Gil, TaeSun Park, Yeunhwan Lim
- Youngman Kim, Ik Jae Shin, et al.
- ✤ J.W.Clark
- E.Mavrommatis, G.Ahn
- R.Roth, R.Trippel, J. Wambach, V.Yu.Ponomarev, A.Richter...
 - ... and the experimental groups in Darmstadt, S.Africa, and Cologne...
- ✤ H.Hergert

Single-particle levels

-RAON

For steady (J,L) = (33,50) MeV, vary K_{sym}, Q_{sym}
 Solutions of TOV obtained for the following cases:

		${\rm Max}~{\rm Mass}({\rm M}_{\odot})$	$\mathrm{R}_{1.4}(\mathrm{km})$	$\rho_{\rm max}({\rm fm}^{-3})$
(-160,600) MeV	(I)	2.05	11.29	0.877
(-160,1000) MeV	(II)	1.92	11.70	0.615
(0,1000) MeV	(III)	1.96	12.07	0.632
(-157,586) MeV ad - 2		2.06	11.27	0.906

G.Ahn, MSc Thesis (NKUA, 2018)

KIDS sales pitch

Give KIDS any EoS you want to test or apply:

- In terms of {p₀,E₀,K₀},{J,L,K_{sym},Q_{sym}}, e.g., for your sensitivity studies
- In the form lations .1 J,L (XEFT, APF ■ m_s*, m_v* , C KIDS can rev ction" which reprodu J,L,K_{svm},Q_{svm} J,L,K_{sym}; Q_{sym}=0 ✤ And can then Nuclear stru Giant/pygmy resonation

- Bulk, static properties: practically independent of the effective mass!
 - We can vary EoS parameters and m* independently and examine effect on observables
- Prospects abound!
 - Giant and pygmy resonances, polarizability...
 - Higher-order momentum dependencies...
 - An exploration of symmetry-energy parameters underway

