From homogeneous matter to finite nuclei: KIDS functional

Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea

A rendering of the future RAON complex, under construction in Daejeon

❖ Chang Ho Hyun, Daegu University

- \div **Tae-Sun Park, SKKU**
- \diamond **Yeunhwan Lim, IBS (now in Texas)**
	- ⁿ **K**orea
	- **BI** IBS (that's me and YHL)
	- ⁿ **D**aegu
	- ⁿ **S**KKU

UNIVERSI 성균관대학교

❖ Hana Gil, Kyungpook National University

❖ Yongseok Oh, Kyungpook National University *Letter*

❖ Gilho Ahn, University of Athens, Greece

❖ Young-Min Kim (UNIST)

KIDS sales pitch

\cdot Give KIDS any $T=0$ EoS you want to test or apply:

- n In terms of $\{p_0, E_0, K_0\}, \{J, L, K_{sym}, Q_{sym}\}, e.g.,$ for your sensitivity studies, or from new constraints
- n In the form of pseudodata from ab initio calculations (χEFT, APR, ...)
- \bullet m_s^{*}, m_v^{*}, Q₀, if you wish
- \cdot **We can reverse-engineer a Skyrme "interaction"** which reproduces that EoS
- ❖ And can then test it directly in
	- ⁿ Nuclear structure (Skyrme-Hartree-Fock)
	- Giant/pygmy resonances (RPA)

v**Introduction**

v**KIDS functional:**

- ⁿ **Natural Ansatz + Skyrme formalism**
- Fits to APR: KIDS-ad2 set
- Successful application to nuclei
- **Effective mass parameters remain free**
- ^q **Proof of principle: From APR straight to nuclei**
- ❖ Symmetry energy and KIDS functional
	- **Figure 10 Freedom to vary all parameters at will**
	- **Relevance of skewness parameter Qsvm**

❖ Summary

My interests and motivation

Skyrme-type interaction and EDF

$$
V_{\text{Skyrme}} = t_0(1 + x_0 P_x)\delta(\mathbf{r}_1 - \mathbf{r}_j)
$$

\n
$$
+ \frac{1}{2}t_1(1 + x_1 P_x)\{p_{12}^2\delta(\mathbf{r}_i - \mathbf{r}_j) + \delta(\mathbf{r}_i - \mathbf{r}_j)p_{12}^2\}
$$

\n
$$
+ t_2(1 + x_2 P_x)p_{12} \cdot \delta(\mathbf{r}_i - \mathbf{r}_j)p_{12}
$$

\n
$$
+ \frac{1}{6}t_3(1 + x_3 P_x)\rho^{\circ}(\tilde{r})\delta(\mathbf{r}_i - \mathbf{r}_j)
$$

\n
$$
+ it_4p_{12} \cdot \delta(\mathbf{r}_i - \mathbf{r}_j)(\sigma_i + \sigma_j) \times p_{12}
$$

\n
$$
E_{\text{Skyr}u} = 4\pi \int_0^\infty dr \, r^2 \left(\frac{\hbar^2}{2m}\tau\right) + \frac{1}{2}t_0(1 + \frac{1}{2}x_0)\rho^2 - \frac{1}{2}t_0(\frac{1}{2} + x_0)\sum_\sigma \rho_i^2 + \frac{1}{4}t_1(1 + \frac{1}{2}x_1)\rho^{\alpha+2} - \frac{1}{12}t_3(\frac{1}{2} + x_3)\rho^{\circ}\sum_\sigma \rho_i^2 + \frac{1}{4}[t_1(1 + \frac{1}{2}x_1) + t_2(1 + \frac{1}{2}x_2)]\rho\tau
$$

\n
$$
- \frac{1}{4}[t_1(\frac{1}{2} + x_1) - t_2(\frac{1}{2} + x_2)]\sum_\sigma \rho_i \tau_i
$$

\n
$$
- \frac{1}{12}[3t_1(1 + \frac{1}{2}x_1) - t_2(1 + \frac{1}{2}x_2)]\rho\nabla^2\rho
$$

\n
$$
+ \frac{1}{4}[t_1(\frac{1}{2} + \frac{1}{2}x_1) + t_2(\frac{1}{2} + \frac{1}{2}x_2)]\sum_\sigma \rho_q \nabla^2\rho_q
$$

\n
$$
+ \frac{1}{2}t_4[\rho\nabla J +
$$

Phenomenological energy-density functionals

❖ Hundreds of EDF models for nuclei and nuclear matter

- \blacksquare Typically \sim 10 parameters fitted to nuclear properties using different data sets and fitting protocols
- \blacksquare Very different predictions below and above ρ_0
- Very different predictions at large isospin asymmetries
	- [cf Dutra et al., PRC85(2012)035201]

Phenomenological energy-density functionals

❖ Only few of the hundreds of EDF models can simultan eously describe nuclear matter and finite nuclei

[M.Dutra et al.,PRC85(2012)035201; P.D.Stevenson et al., AIP Conf.Proc.1529,262]

 \cdot Spurious correlations among parameters (e.g., K₀,m^{*})

❖... while binding energies and radii "prefer" different values for the effective mass

[M.Bender et al., Rev. Mod. Phys. 75,121

Not satisfactory!

q*If an EoS is "realistic", it should be able to correspo nd to nucler properties by definition*

NUCLEAR ENERGY DENSITY FUNCTIONAL FOR KIDS

- Natural Ansatz for energy density inspired by QMBT / EFT
- Convenient Skyrme formalism for nuclei

KIDS Ansatz: Expansion in k_F~ $\rho^{1/3}$

$$
\mathcal{E}(\rho,\delta)=\frac{E(\rho,\delta)}{A}=\mathcal{T}(\rho,\delta)+\sum_{i=0}^3c_i(\delta)\rho^{1+i/3}
$$

- \div If I have SNM and PNM, namely $c_i(0)$ and $c_i(1)$ (plus the quadratic approximation) I obtain analytically: $\{\rho_0, \mathsf{E}_0, \mathsf{K}_0, \mathsf{Q}_0\}, \{\mathsf{J}, \mathsf{L}, \mathsf{K}_{\mathsf{sym}}, \mathsf{Q}_{\mathsf{sym}}\}$
- ❖ And vice versa; or I can fit to SNM/PNM pseudodata
- ❖ First, a few words on:
	- **n** Motivation for Ansatz
	- Why 4 terms? Why low order?

for details: PP,Park,Lim,Hyun,Phys. Rev. C 97,014312 (2018)

PAON

Fetter and Walecka, "Quantum theory of many-particle systems"

- ❖ Realistic potential: strong repulsive core plus attraction at longer range
- ❖ Apply Brueckner methodology in the calculation of nuclear matter energy
- \rightarrow Result: k_F^2 , k_F^3 , k_F^4 , k_F^5 , k_F^6 , ..., converging
	- \bullet Even powers: from repulsive part
	- Odd powers: from both
- \rightarrow The Fermi momentum is the relevant variable : **powers of ρ1/3**

❖ Saturation density is low...

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

- with respect to (effective) boson exchange range (?)
	- n one-pion exchange: vanishing expectation value
	- next boson: rho with $m_0 \sim 775$ MeV ~ 4 fm⁻¹
- Effective Lagrangian in powers of k_F/m_o
- **V** Expansion of E/A in powers of k_F
	- \triangleright ... which means, again, powers of $\rho^{1/3}$
	- \triangleright The Fermi momentum as the relevant variable
	- \triangleright k_F^3 and k_F^4 (i.e., coupling~ $p^{1/3}$) known to be important for obtaining saturation [Kaiser et al.,NPA697(2002)]
- v *Dilute Fermi gas: plus logarithmic terms*

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

OAS

Nuclear energy density functional for KIDS

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Natural Ansatz for potential energy: powers of $k_F \sim \rho^{1/3}$ But how many powers? Which are relevant?

- ❖ Fit to homogeneous matter pseudodata
	- Variational Monte Carlo (APR, FP)
- ❖ Statistical analysis of fit quality; naturalness
- ❖ Keep only the important terms! No overtraining

$$
\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta) \rho^{1+i/3}
$$

□ SNM: 3 terms suffice in converging hierarchy $(c_3(0)=0)$ **QPNM: 4 terms necessary (*different preferences*)**

Nuclear energy density functional for KIDS

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Nuclear energy density functional for KIDS

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Natural Ansatz for potential energy: powers of $k_F \sim \rho^{1/3}$ But how many powers? Which are relevant?

- ❖ Fit to homogeneous matter pseudodata
	- Variational Monte Carlo (APR, FP)
- ❖ Statistical analysis of fit quality; naturalness
- ❖ Keep only the important terms! No overtraining

$$
\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta) \rho^{1+i/3}
$$

 \square SNM: 3 terms suffice in converging hierarchy (c₃(0)=0)

QPNM: 4 terms necessary (*different preferences*)

❖ Symmetric nuclear matter:

- Set p_0 =0.16 fm -3, E₀=-16MeV, K₀ = 240 MeV
- **Determine** $c_{0,1,2}(0)$ **(analytical expressions)**
- **Example 1 Leads to** $Q_0 = -373$ **MeV**
- ❖ Pure neutron matter:
	- Fit $c_{0,1,2,3}(1)$ to the APR pseudodata for PNM
	- **Resulting symmetry-energy parameters:**

J=33MeV, L=49MeV, K_{sym} =-157MeV, Q_{sym} =586MeV

Interpolations and extrapolations

Calculations with chiral interactions reproduced, although they were not used for fitting

Comparisons with other models

Comparisons with other models

PROOF OF PRINCIPLE: APR TAKEN TO NUCLEI

Skyrme parameters by reverse engineering

$$
v_{i,j} = (t_0 + y_0 P_\sigma) \delta(r_{ij}) + \frac{1}{2} (t_1 + y_1 P_\sigma) [\delta(r_{ij}) k^2 + \text{h.c.}] + (t_2 + y_2 P_\sigma) k' \cdot \delta(r_{ij}) k + iW_0 k' \times \delta(r_{ij}) k \cdot (\sigma_i - \sigma_j) + \frac{1}{6} \sum_{n=1}^3 (t_{3n} + y_{3n} P_\sigma) \rho^{n/3} \delta(r_{ij}), \qquad (3)
$$

$$
t_0 = \frac{8}{3}c_0(0), \quad y_0 = \frac{8}{3}c_0(0) - 4c_0(1),
$$

\n
$$
t_{3n} = 16c_n(0), \quad y_{3n} = 16c_n(0) - 24c_n(1), \quad (n \neq 2)
$$

\n
$$
t_{32} = 16c_2(0) - \frac{3}{5} \left(\frac{3}{2}\pi^2\right)^{2/3} \theta_s,
$$

\n
$$
y_{32} = 16c_2(0) - 24c_2(1) + \frac{3}{5}(3\pi^2)^{2/3} \left(3\theta_\mu - \frac{\theta_s}{2^{2/3}}\right)
$$

\nwith
\n
$$
\theta_s \equiv 3t_1 + 5t_2 + 4y_2, \quad \theta_\mu \equiv t_1 + 3t_2 - y_1 + 3y_2.
$$

unconstrained from homogenous matter \rightarrow vary freely But the total $c_2(0)$, $c_2(1)$ will remain unchanged!

For given KIDS functional $c_i(0)$, $c_i(1)$ (i.e., fixed SNM, PNM)

- ❖ Chose effective masses (vary at will)
- \clubsuit All t_i, y_i are now known except t₁,t₂,x₁,x₂
- $\mathbf{\hat{v}}$ The two combinations θ_{s} , θ_{u} also known (eff. masses)

Vota Two independent free parameters plus spin-orbit W₀

- Fit only to $40Ca$, $48Ca$, $208Pb$
- Only bulk properties: E/A, charge radius: 6 data

Binding energy, charge radii

Neutron skin thickness

KIDS-ad2: Predictions for 68Ni (not fitted)

- ❖ Theoretical studies within Skyrme and covariant density functional theory:
- $\mathbf{\hat{v}}$ a_D correlated with neutron skin thickness
- \cdot and with symmery energy and its density dependence

PDR: no correlation

- \triangle **For given immutable EoS (no refitting), a** Skyrme-type functional can easily be reverseengineered
- ❖ Bulk, static properties: practically independent of the effective mass!
	- We can vary EoS parameters and m^{*} independently and examine effect on observables
- \diamond **So far I showed results with KIDS-ad2 based** *on APR. Next: An exploration of symmetryenergy parameters*

EXPLORING THE SYMMETRY ENERGY PARAMETERS

Curvature K_{sym} and skewness Q_{sym}

R. Sellahewa and A. Rios, Phys. Rev. C 90, 054327 (2014)

❖ Symmetric nuclear matter:

- \bullet {ρ₀, E₀, K₀} → 3x3 system → {c_i(0); i=0,1,2; c₃(0)=0}
- ^o *Feasible but unnecessary:*
- ^o *{ρ0, E0, K0, Q0}* è*4x4 system* è *{ci (0); i=0,1,2,3}*
- ❖ Symmetry energy:
	- {J, L, K_{sym}, Q_{sym}} \rightarrow 4x4 system \rightarrow {[c_i(1)-c_i(0)]; $i=0.1,2.3$

Let us keep SNM, J, L, K_{sym} steady and equal to the KIDS-ad2 values; vary Q_{sym} ; and solve for $c_i(1)$

❖ Dilute neutron matter

PRAGE

 \div For steady (J,L) = (33,50) MeV, vary K_{sym}, Q_{sym} ❖ Solutions of TOV obtained for the following cases:

G.Ahn, MSc Thesis (NKUA, 2018)

PRACK

Summary

[❖] Natural Ansatz + Skyrme formalism: KIDS functional

- **3** terms in expansion sufficient for SNM: $\{p_0, E_0, K_0\}$
- \blacksquare **4 terms necessary for neutron matter and symmetry energy**: {J, L, K_{sym} , Q_{sym} } **Skyrme- type**
- v**From fixed EoS straight to nuclei**

"interaction" by reverse engineering

- **V** APR: static, bulk nuclear properties insensitive to
	- **Effective-mass parameters**
	- **High-order parameters of symmetry energy**

q**Flexibility to choose parameter values at will** for sensitivity studies **or adjust them to**

- Dynamical observables (e.g., giant resonances)
- Ab initio pseudodata (polarized matter, neutron drops...
- ⁿ **Astrophysical and HIC constraints**

Thank you!

Thanks to my collaborators and contributors

- **❖ Chang Ho Hyun, Hana Gil, TaeSun** Park, Yeunhwan Lim
- ❖ Youngman Kim, Ik Jae Shin, et al.
- v J.W.Clark
- \div **E.Mavrommatis, G.Ahn**
- v R.Roth, R.Trippel, J. Wambach, V.Yu.Ponomarev, A.Richter...
	- ... and the experimental groups in Darmstadt, S.Africa, and Cologne...
- **❖ H.Hergert**

OASP

Single-particle levels

 \div For steady (J,L) = (33,50) MeV, vary K_{sym}, Q_{sym} ❖ Solutions of TOV obtained for the following cases:

G.Ahn, MSc Thesis (NKUA, 2018)

PRACK

KIDS sales pitch

ⁿ ...

❖ Give KIDS any EoS you want to test or apply:

- n In terms of $\{\rho_0, E_0, K_0\}, \{J, L, K_{sym}, Q_{sym}\}, e.g.,$ for your sensitivity studies
- ⁿ In the form of pseudodata from ab initio calculations $(XEFT, APF)$ m_s^* , m_v^* , C \cdot KIDS can rev \rightarrow which reproduce J, L, K_{sym}, Q_{sym} \clubsuit And can then \swarrow J.L.K_{sym}; Q_{sym}=0 \blacksquare Nuclear stru ■ Giant/pygmy resonances

- **V** For given **immutable** EoS, a Skyrme-type functional can easily be reverse-engineered ★*world first*★
- ❖ Bulk, static properties: practically independent of the effective mass!
	- We can vary EoS parameters and m^{*} independently and examine effect on observables
- ❖ Prospects abound!
	- Giant and pygmy resonances, polarizability...
	- Higher-order momentum dependencies...
	- An exploration of symmetry-energy parameters underway

