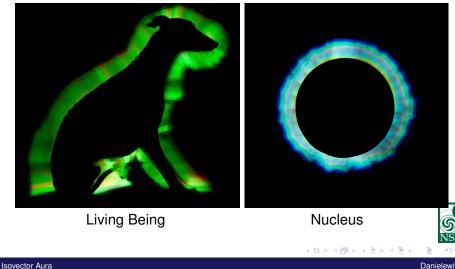
Stiff Symmetry Energy from Thick Isovector Aura

P. Danielewicz^{1,2}, J. Lee³, P. Singh^{1,4} and Y. Cianyi^{2,5}

¹Michigan State U, ²African Inst f/Mathematical Sciences, ³U of Hong Kong, ⁴Deenbandhu Chhotu Ram U Science & Techn and ⁵U of Kinshasa

8th International Symposium on Nuclear Symmetry Energy

Busan, South Korea, September 10 - 13, 2018



Isovector Aura

ヘロト ヘアト ヘヨト ヘ

Aura

Historically Kirlian Photography

Danielewicz

Charge Symmetry & Charge Invariance

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(n) = F_0 + F_2 n^2 + F_4 n^4 + ...$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n*-*p* space. Isospin $\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$ SU(2)

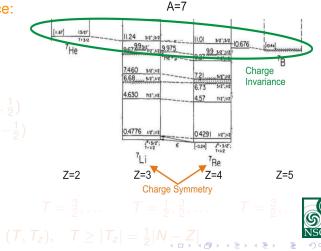
ъ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Charge Symmetry & Charge Invariance

Charge symmetry: $n \leftrightarrow p$ invariance

Charge invariance: symmetry under *rotations* in *n-p* space

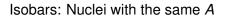

Isospin doublets

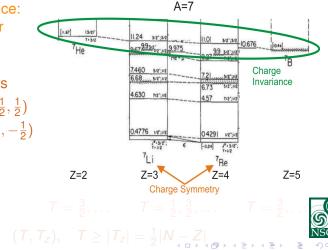
$$p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$$
$$p:(\tau,\tau_z) = (\frac{1}{2},-\frac{1}{2})$$

Net isospin

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_{i}$$

Isobars: Nuclei with the same A



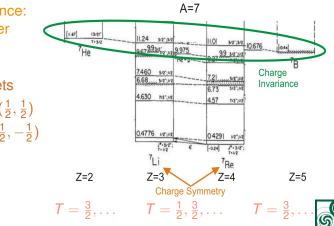

Charge Symmetry & Charge Invariance

- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under *rotations* in *n-p* space
- Isospin doublets
- $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $n:(\tau,\tau_z) = (\frac{1}{2},-\frac{1}{2})$

Net isospin

 $\vec{\tau}_i$

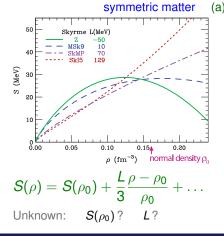
Isobars: Nuclei with the same A


Charge Symmetry & Charge Invariance

- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under *rotations* in *n-p* space
- Isospin doublets
- $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $n:(\tau,\tau_z) = (\frac{1}{2},-\frac{1}{2})$

Net isospin

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$$


Nuclear states: (T, T_z) , $T \ge |T_z| = \frac{1}{2}|N - Z|$

Danielewicz

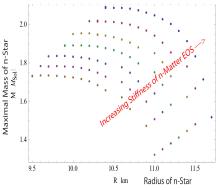
Examples: Nuclear Energy, Densities

$$\frac{E}{A}(\rho_n,\rho_p)=\frac{E_0}{A}(\rho)+S(\rho)\left(\frac{\rho_n-\rho_p}{\rho}\right)^2+\mathcal{O}(\dots^4)$$

(a)symmetry energy $\rho = \rho_n + \rho_p$ Net $\rho = \rho_n + \rho_p$ isoscalar Difference $\rho_n - \rho_p$ isovector $\rho_a = \frac{A}{M - 7} \left(\rho_n - \rho_p \right)$ isoscalar $\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{N-Z}{\Delta} \rho_a(r) \right]$ Energy min in Thomas-Fermi: $\rho_a(r) \propto \frac{\rho(r)}{S(\rho(r))}$ low $S \Leftrightarrow high \rho_a$

ヘロト ヘ回 ト ヘヨト ヘ

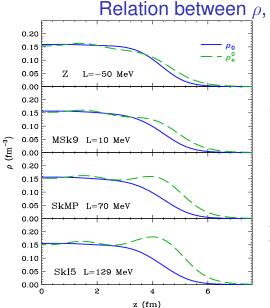
Stiffness of EOS & Mass & Radius of n-Star


2

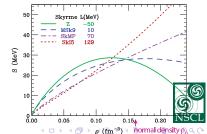
$$egin{split} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho)\left(rac{
ho_n -
ho_p}{
ho}
ight) \ S &\simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{split}$$

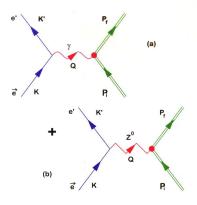
In neutron matter: $\rho_p \approx 0 \& \rho_n \approx \rho$.

Then,
$$\frac{E}{A}(\rho) \approx \frac{E_0}{A}(\rho) + S(\rho)$$

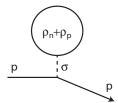

$$P =
ho^2 rac{\mathrm{d}}{\mathrm{d}
ho} rac{E}{A} \simeq
ho^2 rac{\mathrm{d}S}{\mathrm{d}
ho} \simeq rac{L}{3
ho_0}
ho^2$$

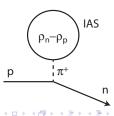
Schematic Calculation by Stephen Portillo (Harvard U)


Stiffer symmetry energy correlates with larger max mass of neutron star & larger radii


 $\rho_a \& S(\rho)$ Results f/different Skyrme ints in half- ∞ matter PD&Lee NPA818(09)36 Isoscalar ($\rho = \rho_n + \rho_p$; blue) & isovector ($\rho_a \propto \rho_n - \rho_p$; green) densities displaced relative to each other.

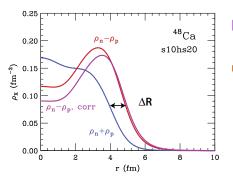
As $S(\rho)$ changes, $\rho_a(r) \propto \frac{\rho(r)}{S(\rho(r))}$, so does displacement.


Probing Independently 2 Densities


Jefferson Lab Direct: $\sim p$ Interference: $\sim n$

PD, Singh, Lee NPA958(17)147 [after Dao Tien Kho]

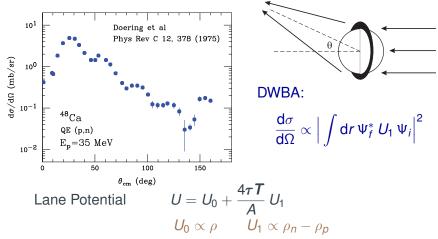
elastic: $\sim p + n$ charge exchange: $\sim n - p$



Isovector Aura

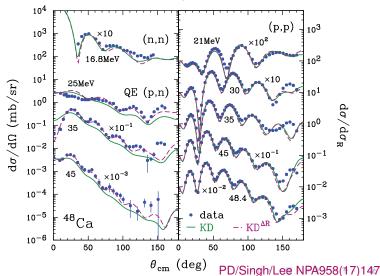
ъ

Expectations on Isovector Aura?

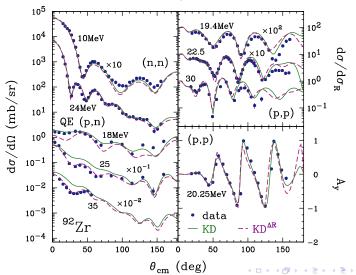

Much Larger Than Neutron Skin! Surface radius $R \simeq \sqrt{\frac{5}{3}} \langle r^2 \rangle^{1/2}$ rms neutron skin $\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}$ $\simeq 2 \frac{N-Z}{A} \left[\langle r^2 \rangle_{\rho_n-\rho_p}^{1/2} - \langle r^2 \rangle_{\rho_n+\rho_p}^{1/2} \right]$ rms isovector aura

イロト イポト イヨト イヨト

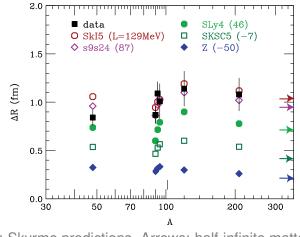
Estimated $\Delta R \sim 3\left(\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}\right)$ for ⁴⁸Ca/²⁰⁸Pb! Even before consideration of Coulomb effects that further enhances difference!


Direct Reaction Primer

It is common to assume the same geometry for $U_0 \& U_1$, implicitly $\rho \& \rho_a$, e.g. Koning&Delaroche NPA713(03)231

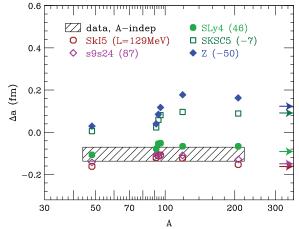


Simultaneous Fits to Elastic & Charge-Change: ⁴⁸Ca Different radii for densities/potentials: $R_a = R + \Delta R$


Simultaneous Fits to Elastic & Charge-Change: 92 Zr Different radii for densities/potentials: $R_a = R + \Delta R$

Thickness of Isovector Aura

6 targets analyzed, differential cross section + analyzing power


Colored: Skyrme predictions. Arrows: half-infinite matter

Thick \sim 0.9 fm isovector aura!

~Independent of A. . .

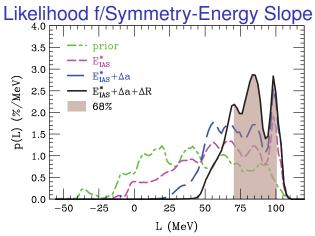
Difference in Surface Diffuseness

Colored: Skyrme predictions. Arrows: half-infinite matter Sharper isovector surface than isoscalar!

Bayesian Inference

Probability density in parameter space p(x) updated as experimental data on observables *E*, value \overline{E} with error σ_E , get incorporated

Probability p is updated iteratively, starting with prior p_{prior} p(a|b) - conditional probability

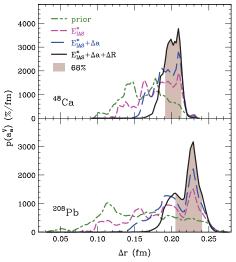

$$p(x|\overline{E}) \propto p_{\text{prior}}(x) \int dE \, \mathrm{e}^{-rac{(E-\overline{E})^2}{2\sigma_E^2}} p(E|x)$$

For large number of incorporated data, p becomes independent of $p_{\rm prior}$

In here, p_{prior} and p(E|x) are constructed from all Skyrme ints in literature, and their linear interpolations. p_{prior} is made uniform in plane of symmetry-energy parameters (L, S_0)

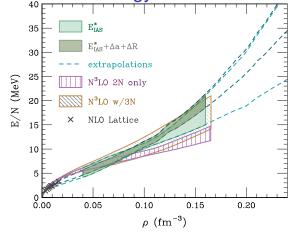
<ロ> (四) (四) (日) (日) (日)

 E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1


Oscillations in prior of no significance

- represent availability of Skyrme parametrizations

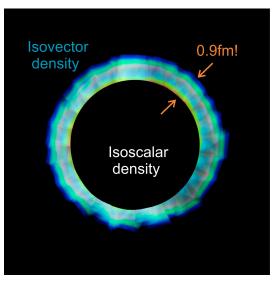
A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


Likelihood f/Neutron-Skin Values

⇒ + ⇒

Likelihood f/Energy of Neutron Matter

S NSCL


E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1

Some oscillations due to prior

Bayesian Inference

Conclusions

Isovector Aura

Danielewicz

ヘロト ヘ回ト ヘヨト ヘヨト

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry & neutron energies are stiff! $L = (70 - 100) \text{ MeV}, S(\rho_0) = (33.5 - 36.5) \text{ MeV}$ at 68% level

PD, Lee & Singh NPA818(09)36, 922(14)1, 958(17)147 + in progress NSF PHY-1403906 & DOE DE-SC0019209

くロト (過) (目) (日)

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry & neutron energies are stiff! L = (70 - 100) MeV, S(ρ₀) = (33.5 - 36.5) MeV at 68% level

 PD, Lee & Singh NPA818(09)36, 922(14)1, 958(17)147 + in progress
 NSE PHY-1403906 & DOE DE-SC0019209

イロト イポト イヨト イヨト