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Nuclear Symmetry Energy in Liquid Drop Model

@ Nuclear Symmetry energy
: Energy difference between PNM and SNM

S8 (n) = En(n) — Es(n),
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Nuclear Symmetry Energy in Liquid Drop Model

@ Symmetry energy in nucleus

LAF
1+ ZA-1/3
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E(Z,A) = —BA + EgA?/® +
+ E¢

Table : Liquid drop model parameter which minimize the root mean square deviation in total
binding energy

B(MeV) Es(MeV) S, (MeV) Ss/S, A (MeV) RMSD (MeV) -
15890  20.219 28951  1.937 12.196 2529 w/o shell
15886  19.777 31524 2522  11.257 1157 w/ shell

Bulk ans Surface part : Isospin asymmetry
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Figure : Binding energy difference in LDM approach

@ LDM is fast and accurate to get the total binding energy
: The most accurate mass model ogysp ~ 0.5MeV

Table : Root Mean Square Deviation in total binding energy from mass models
FRDM  FRDM12 TF HFB21 D1M Dz
opusp (MeV)  0.654 0.579 0.649 0.572 0.789 0.394
@ Light and Proton rich : Large deviation (HFB or Few body)
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Figure : Neutron dripline and nuclear symmetry energy

@ Neutron dripline : up >0, S, <0, Sop <0
@ As Sy increases, the neutron dripline moves to left
@ Proton drip lines don’t change
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Nuclear Symmetry Energy in Liquid Drop Model

TF approx

@ TF assumes the local density is made of plane waves.

(L) :
nt(r) _ ny [1 <Rt) ] if r<Ahy 6)
0 otherwise
We find ny, oy, R; for a given N, Z minimizing the total binding energy,
E(N,Z) = / 4xr2Elnn(r), np(r), Vnn(r), Vip(r)] dr )
where
E=Eg+Ec+ Eex + Egrad (8)

where £ is the Coulomb energy density, £¢ is the exchange Coulomb energy density,
and £y, is the density gradient energy density which is given as

1
Egrad = 5 [an(v”n)Z +2QnpVnnVnp 4 Qpp(Vnp)z] . (9)
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Density gradient interaction
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Figure : ogusp as a function of Qny and Qpp

@ 2336 Nuclei to fit Qnn and Qnp
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@ Gradient interaction in TF vs Surface — LDM 3D neutron
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Figure : Density profile at the inner crust of
neutron stars
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Nuclear Symmetry Energy in Liquid Drop Model

Thus, the planar approximation of semi-infinite nuclear matter gives the correct
magnitude of the surface tension where the surface tension is given as

+oo
o6 = [ 1= uamn = ipni] (1)
—00
where ¢, represents the isospin asymmetry of dense nuclear matter, H is the nuclear
matter energy density, n(up) is the chemical potential of neutron (proton). The density
profile of the semi-infinity nuclear matter have the stationary solution,
0 ffg’j [H — pnnn — ppnp] = 0. We assume the density profile of semi-infinite nuclear
matter follows,

Nn; — N
)= m + o
P\ =z,
12
Np; — Npo (12)
np(2) = ————"—~ + Np,
1+exp (—ap")

where np, , and np, , are dense and dilute nuclear matter densities obtained from the
thermodynamic equations for existence,

Hn; = Png s Hp; = Hpos  Pi = Po- (13)

11/24



Nuclear Symmetry Energy in Liquid Drop Model

0.12 T T T T T T T T T T T

12F 4
Neutron
0.10 B e
.
L0F «
N3LO450 o

__0.08} 4 & #

? I 08F rd J

£ s pas E

= 0.06F Proton Y, =0.35 | > o

EopTTT = ,

S 0.04f \ B 3 ol p |
0.021 1 02k 4
0.00 ' ' L h s 0.0 L L L L -

-8 —6 —4 -2 0 2 4 6 8 0.0 0.1 0.2 0.3 0.4 0.5

Figure : Left panel : density profile, Right panel : surface tension as a function of proton fraction x

2.2%+q
Cx—o gt (1-x°
where oy = o(x = 1/2). « and q are fitting parameters for surface tension.

o(X)=o , (14)
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Core-crust density in neutron star
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Figure : Gradient coefficients(Qnn, Qnp) and surface tension parameters (oo, os)

o0 = 01 + aQnn + bQnp ,

15
o§ = 02 + cQnn + dan. ( )

Eq. (15) is the linear approximation for our numerical calculation.
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Core-crust density in neutron star
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Figure : Contour plot of the core-crust transition
density of neutron stars from thermodynamic
instability

Thermodynamic instabilities : The matter is
stable when the mathematical is

maintained,
Vo +2(4ne?B)'/2 — Bk2 >0,  (16)
where
2
B T R
Opp  Opn/Opn
Bpp /0,
B = 2(Qup+2QupC+ Qun?) ¢ = — e/ 000
Opin/Opn
(18)

and kyr is the Thomas-Fermi wave
number,

k2 462 k2

TF = The'®’ ke = (32pp)'/3. (19)



Core-crust density in neutron star

pt = pt; +aQun + BQnp — pt = py, + 00 + 005 (20)

Table : Numerical values for parameters in Eq. (20)

py, (fm—3) 9.680 x 1072+ 5.211 x 10~*
v (MeV—1fm=1) —1.998 x 1072 +4.191 x 10~
5§ (MeV—1fm~") 2522 x1073+1.063 x 104
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Neutron Star and Symmetry energy

Neutron Skin and R1A4M®
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Figure : Left panel : Neutron matter E /A band, Holt and Kaiser, Phys. Rev. C 95, 034326 (2017).
Right Panel : Neutron Skin and L (X. Roca-Maza et al. Phys. Rev. Lett. 106)
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Neutron Star and Symmetry energy

Energy density functional

@ Bulk matter energy density £(n, x)
£(n,x) = 7Tn+ Tp+(1 —2xPh(n) + [1 = (1 =20 fs(m),  (24)

where n is the nucleon number density, 7, and 7 are the neutron and proton
kinetic energy densities, x is the proton fraction,

3 3
n)=>"an®H3) - fy(n) =" bin@H/3) (25)
= i=0
@ Neutron matter from EFT (N2LO450, N2LO500, N3LO414, N3LO450, N3LO500)

@ Symmetric matter from Finite nuclei properties (205 Skyrme force models)
@ Or Bayesian (EFT— prior, Skyrme — Likelihood)
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Figure : Saturation properties from Skyrme force models, Dutra et al., Phys. Rev. C 85, 035201

(2012).
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@ Neutron Star Mass and Radius : TOV equations

P _

— e2x m
== Xe+p) (5 +4mp),
‘ZTT =4rr2e.

@ Tidal deformability : Quadrapole moment (Q;), Gravitational field

1 9P Pex
Q= / d*x6p(x) (X/Xj* *"25/7) & »

= —. 26
3 ox'ox! (26)
2\’
Qj=-X&;, AN=GX (GM) . (27)
@ Moment of Inertia
8r [ 4 (A—v)/2
I = ) r(e + p)e dr (28)
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Summary

Summary

Symmetry energy vs neutron drip lines

Surface tension vs density gradient interaction

Surface tension vs neutron star’s core-crust transition density

Neutron skin vs Ry an

Symmetry energy density slope (L), macroscopic quantities, microscopic quantites
Nuclear matter pressure at 2ng
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