Comparison of symmetry energy constraints from neutron star merger and heavy ion collisions LIGO Detects a Neutron Star Merger ¹³²Sn+¹²⁴Sn @ E/A=270 MeV

Betty Tsang, NSCL Michigan State University

NuSYM 2018: 10/11-14 Busan, S. Korea

A. Bauswein, S. Goriely, and H.-T. Janka, APJ, 773, 21 (2013)

Tidal deformation of the Neutron Star

A<800 (90% confidence) GW170817 PRL 119 161101

$$\Lambda = \frac{2}{3}k_2 \left(\frac{c^2 R}{GM}\right)^5 = \frac{64}{3}k_2 \left(\frac{R}{R_s}\right)^5$$

energy density $[MeV/fm^3]$

Annala et al., PRL 120, 172703

Nuclear Physics ↔ Neutron Star Physics Using Skyrmes to conduct an overview study of Neutron star properties

 $E/A (\rho, \delta) = E/A (\rho, 0) + \delta^2 \cdot S(\rho); \qquad \delta = (\rho_n - \rho_p)/(\rho_n + \rho_p) = (N-Z)/A$

Compare to experimental data

Very little selectivity on tidal deformability at low density

Sub-saturation constraints do not constrain the tidal deformability or neutron star radii. However, these constraints are important to understand the neutron crust-core-transition.

Which Density to explore ?

Tommy C.Y. Tsang et al., under

What observable?

How to squeeze nuclear matter – Heavy Ion collisions

Determination of symmetric matter EOS from heavy-ion collisions

Danielewicz et al., Science 298,1592 (2002).

High density constraints from heavy-ion collisions

Primary	Beam	Target	E _{beam} /A	δ_{sys}	evt(M)	2016	
¹²⁴ Xe	¹⁰⁸ Sn	¹¹² Sn	269	0.09	8	4/30-5/4	
	¹¹² Sn	¹²⁴ Sn	270	0.15	5	5/4-5/6	
²³⁸ U	¹³² Sn	¹²⁴ Sn	269	0.22	9	5/25-5/29	
	¹²⁴ Sn	¹¹² Sn	270	0.15	5	5/30-6/1	
Z=1,2,3			100, 200		0.6	6/1	

Talks by JW Lee, RS Wang, M. Nishimura, M. Kaneko, G. Jhang,

Double Ratios vs. Single Ratios

 $R_{n/p} = Y(n)/Y(p)$

Experimental efficiencies not easily determined

$$DR_{n/p} = \frac{R_{n/p} \left({^{124}Sn + {^{124}Sn} \right)}{R_{n/p} \left({^{112}Sn + {^{112}Sn} \right)}$$

Pros:

Minimize sensitivity to neutron and proton detector efficiencies.

Cons: May lose sensitivities to symmetry energy or effective mass due to cancelation of effects.

m_v*

Density Dependence \rightarrow So vs L Momentum Dependence $\rightarrow m_s^*$ and m_v^*

Experimental Data

$$R_{n/p} = Y(n)/Y(p)$$

$$DR_{n/p} = \frac{R_{n/p} (^{124} Sn + ^{124} Sn)}{R_{n/p} (^{112} Sn + ^{112} Sn)}$$

Strong correlation between L & S₀ and m_v^* and m_s^* $\Delta m_{np}^*=0.41+-0.15$ or m_v^* 0.27+-0.25

Strong linear correlation between m_v^* and m_s^* $f_I = \left(\frac{m_N}{m_s^*} - \frac{m_N}{m_v^*}\right) = \frac{1}{2\delta} \left(\frac{m_N}{m_n^*} - \frac{m_N}{m_p^*}\right)$ $f_I \approx -\frac{1}{2\delta} \Delta m_{np}^* \left(\frac{m_N}{m_s^*}\right)^2,$

$$\Delta m_{np}^* = (-0.08 \pm 0.07)\delta.$$

Effective mass splitting

m_v*

STAND BACK

CO1 22

Physics insights including the EoS from heavy ion collisions depends heavily on transport model simulations

"All models are wrong; some models are useful" George Box, 1919-2013

Transport Code Evaluation Project

Transport model workshop Sept 14-15, 2018

Writing group

B. Tsang, H. Wolter, Y.X. Zhang², J. Xu¹, M. Colonna, P. Danielewicz, A Ono, Y.J. Wang

Transport Code Evaluation Project

Vlas

Χ

Х

Х

Χ

Χ

Writing group

B. Tsang, H. Wolter, Y.X. Zhang², J. Xu¹, M. Colonna, P. Danielewicz, A Ono, Y.J. Wang

BUU Type		Box							
	Code	flow pub	casc pub	Vlas pion	QMD Type	Code	flow pub		
BUU-VM ^a	S. Mallik		X	X	Х	ImQMD	Y.X. Zhang	X	
BLOB	P. Napolitani	X				IQMD-BNU	J. Su	Χ	
GIBUU-RMF	J. Weil	X	X			IQMD	C. Hartnack	X	
GIBUU-Sky	J. Weil	X				IQMD-IMP	Z.Q. Feng	X	
IBL	W.J. Xie	X				IQMD-SINAP	G.Q. Zhang	X	
IBUU	J. Xu	Χ	X	Х	Χ	JAM	A. Ono		
pBUU	Danielewicz	X	X	X	X	JQMD	T. Ogawa		
RBUU	K. Kim	Χ				TuQMD	D. Cozma	Χ	
RVUU	C.M. Ko	X	X	X	X	UrQMD	Y.J. Wang	Χ	
SMASH	Oliinychenko		Χ			Pub: Xu et al., '	PRC.93.04460	9 (2016	6
SMF	M. Colonna	X	X	X	X	Pub : Zhang et a	al., PRC 97, 035	505 (20)

Transport Workshop after NuSYM2018

Summary and Outlook

Laboratory measurements have provided constraints on the symmetry energy and the equation of state for neutron-rich matter.

- Significant constraints at sub-saturation densities.
- Constraints on effective mass splitting around and above saturation densities.
- The important density range of $\rho_0 \le \rho \le 2\rho_0$ is accessible via heavy ion reaction.
 - Experimental results from STRIT / collaboration and others

>Improving the reliability of transport theory predictions.

Code evaluation project is making significant progress in this direction.

- ► Future direction discussions on Thursday 17:35 18:15
 - Connect our EoS results from HIC to the neutron star merger results
 Send me topics and slides