Supernova equation of state and symmetry energy at subnuclear densities

H. Togashi (RIKEN)

Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, K. Sumiyoshi, E. Hiyama

Outline

1: Introduction

2: Supernova EOS with realistic nuclear forces

3: Systematic study for non-uniform matter

4: Summary

8th International Symposium on Nuclear Symmetry Energy (NuSYM2018) @ Busan, Republic of Korea, Sep. 11, 2018

1. Introduction

Supernova equation of state (SN-EOS)

Model	Nuclear	Degrees	M_{\max}	$R_{1.4M_{\odot}}$	Ξ	publ.	References
	Interaction	of Freedom	(M _☉)	(km)		avail.	
H&W	SKa	$n, p, \alpha, \{(A_i, Z_i)\}$	2.21^a	13.9 a		n	El Eid and Hillebrandt (1980); Hillebrandt et al. (1984)
LS180	LS180	$n, p, \alpha, (A, Z)$	1.84	12.2	0.27	у	Lattimer and Swesty (1991)
LS220	LS220	$n, p, \alpha, (A, Z)$	2.06	12.7	0.28	у	Lattimer and Swesty (1991)
LS375	LS375	$n, p, \alpha, (A, Z)$	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	$n, p, \alpha, (A, Z)$	2.23	14.5	0.26	у	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	у	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.74	12.6	0.23	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.79	14.8	0.31	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.42	13.2	0.30	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.95	12.7	0.25	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
\mathbf{SFHx}	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	у	Steiner et al. (2013a)
SHT(NL3)	NL3	$n,p,\alpha,\{(A_i,Z_i)\}$	2.78	14.9	0.31	у	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

- Lattimer-Swesty EOS : <u>Skyrme + Compressible liquid drop model</u>

(NPA 535 (1991) 331)

- Shen EOS : <u>Relativistic Mean Field Theory + Thomas-Fermi model</u>

(PTP 100 (1998) 1013)

1. Introduction

Supernova equation of state (SN-EOS)

ModelNuclearDegrees $M_{\rm max}$ $R_{1.4M_{\odot}}$ Ξ publ. ReferencesInteractionof Freedom (M_{\odot}) (km) avail	
Interaction of Freedom (M_{\odot}) (km) avail	
or receton (no) (kin) avan.	
H&W SKa $n, p, \alpha, \{(A_i, Z_i)\}$ 2.21 ^a 13.9 ^a n El Eid and Hillebrandt (1980); Hillebrandt et	al. (1984)
LS180 LS180 y Lattimer and Swesty (1991)	
LS220	
LS375 LS375 $n, p, \alpha, (A, Z)$ 2.72 14.5 0.32 y Lattimer and Swesty (1991)	
STOS TM1 $n, p, \alpha, (A, Z)$ 2.23 14.5 0.26 y Shen <i>et al.</i> (1998); Shen <i>et al.</i> (1998, 2011)	
FYSS TM1 $n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$ 2.22 14.4 0.26 n Furusawa et al. (2013b)	
$\mathrm{HS}(\mathrm{TM1}) \qquad \mathrm{TM1}^* \qquad n, p, d, t, h, \alpha, \{(A_i, Z_i)\} \qquad 2.21 \qquad 14.5 \qquad 0.26 \mathrm{y} \mathrm{Hempel} \text{ and Schaffner-Bielich (2010); Hempel} \\ \mathrm{Hempel} = 10^{-10} \mathrm{Hempel} + 1$	et al. (2012)
$\mathrm{HS}(\mathrm{TMA}) \qquad \mathrm{TMA}^* \qquad n, p, d, t, h, \alpha, \{(A_i, Z_i)\} \qquad 2.02 \qquad 13.9 \qquad 0.25 \mathrm{y} \mathrm{Hempel} \text{ and Schaffner-Bielich (2010)}$	
$\mathrm{HS}(\mathrm{FSU}) \qquad \mathrm{FSUgold}^* \qquad n, p, d, t, h, \alpha, \{(A_i, Z_i)\} \qquad 1.74 \qquad 12.6 \qquad 0.23 \qquad \mathrm{y} \mathrm{Hempel} \text{ and Schaffner-Bielich (2010); Hempel} \\ \mathrm{Hempel} = 1.74 \qquad 12.6 \qquad 0.23 \qquad \mathrm{y} \mathrm{Hempel} = 1.74 \qquad 12.6 \qquad 0.23 \qquad \mathrm{y} \mathrm{Hempel} = 1.74 \qquad \mathrm{Hempel} = 1.$	et al. (2012)
HS(NL3) NL3* Weight March Field There y Hempel and Schaffner-Bielich (2010); Fischer	et al. (2014a)
HS(DD2) DD2 <i>Relativistic Mean Field Theory</i> y Hempel and Schaffner-Bielich (2010); Fischer	et al. (2014a)
$ \text{HS(IUFSU)} \text{IUFSU*} n, p, d, t, h, \alpha, \{(A_i, Z_i)\} 1.95 12.7 0.25 \text{y} Hempel and Schaffner-Bielich (2010); Fischer and Scha$	et al. (2014a)
SFHo SFHo $n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$ 2.06 11.9 0.30 y Steiner <i>et al.</i> (2013a)	
SFHx SFHx $n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$ 2.13 12.0 0.29 y Steiner <i>et al.</i> (2013a)	
SHT(NL3) NL3 $n, p, \alpha, \{(A_i, Z_i)\}$ 2.78 14.9 0.31 y Shen <i>et al.</i> (2011b)	
SHO(FSU) FSUgold $n, p, \alpha, \{(A_i, Z_i)\}$ 1.75 12.8 0.23 y Shen <i>et al.</i> (2011a)	
SHO(FSU2.1) FSUgold2.1 $n, p, \alpha, \{(A_i, Z_i)\}$ 2.12 13.6 0.26 y Shen <i>et al.</i> (2011a)	

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

- Lattimer-Swesty EOS : <u>Skyrme + Compressible liquid drop model</u>

(NPA 535 (1991) 331)

- Shen EOS : <u>Relativistic Mean Field Theory + Thomas-Fermi model</u>

(PTP 100 (1998) 1013)

1. Introduction

Supernova equation of state (SN-EOS)

Model	Nuclear	Degrees	M_{\max}	$R_{1.4M_{\odot}}$	Ξ	publ.	References
	Interaction	of Freedom	(M _☉)	(km)		avail.	
H&W	SKa	$n, p, \alpha, \{(A_i, Z_i)\}$	2.21^a	13.9 a		n	El Eid and Hillebrandt (1980); Hillebrandt et al. (1984)
LS180	LS180	~1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			•	у	Lattimer and Swesty (1991)
LS220	LS220	Skyrme-type effective interaction			ion	у	Lattimer and Swesty (1991)
LS375	LS375	n, p, lpha, (A, Z)	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	n,p,lpha,(A,Z)	2.23	14.5	0.26	у	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	у	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.74	12.6	0.23	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*		F • 1	1 771		у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	Relativistic Mean	Field	Ineo	ry	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	1.95	12.7	0.25	У	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
SFHx	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	у	Steiner et al. (2013a)
SHT(NL3)	NL3	$n,p,\alpha,\{(A_i,Z_i)\}$	2.78	14.9	0.31	У	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

TNTYST | AV18+UIX n, p, α , (A, Z) 2.21 11.5 0.32 y Togashi *et al.* (2017)

We have constructed a new SN-EOS with the variational method starting from bare nuclear forces.

Our procedure to construct a SN EOS table

2. Supernova EOS with realistic nuclear forces

Nuclear Hamiltonian

- The expectation value of the Hamiltonian is calculated in *the two-body cluster approximation*.
- The prescription by Schmidt and Pandharipande is employed to obtain the free energy *at finite temperature*.

(Phys. Lett. 87B(1979) 11, PRC 75(2007) 035802)

Nuclear EOS for uniform matter

n_0 [fm ⁻³]	E_0 [MeV]	<i>K</i> [MeV]	E _{sym} [MeV]
0.16	-16.1	245	30.0

Our EOS : HT and M. Takano, NPA 902 (2013) 53 APR : A. Akmal, V. R. Pandharipande, D. G. Ravenhall, PRC 58 (1998) 1804 FHNC : A. Mukherjee, PRC 79(2009) 045811

Nuclear EOS for non-uniform matter

We use the Thomas-Fermi method by Shen et al.

Free energy of a Wigner-Seitz cell

(PTP 100 (1998) 1013, APJS 197(2011) 20)

$$F = \int \frac{\mathbf{Bulk \, energy}}{d\mathbf{r} f(n_{p}(r), n_{n}(r), n_{\alpha}(r))} + F_{0} \int d\mathbf{r} |\nabla(n_{p}(r) + n_{n}(r))|^{2} + \frac{e^{2}}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[n_{p}(r) + 2n_{\alpha}(r) - n_{e}][n_{p}(r') + 2n_{\alpha}(r') - n_{e}]}{|\mathbf{r} - \mathbf{r}'|} + c_{bcc} \frac{(Ze)^{2}}{a}$$

Free energy density of uniform matter: $f = f_N + f_\alpha$

Thermodynamic Quantities

HT et al., NPA 961 (2017) 78

Home Page of Variational EOS Table http://www.np.phys.waseda.ac.jp/EOS/

Equation of state for nuclear matter with the variational method

Parameter

 $\log_{10}(T)$ [MeV]

 $\log_{10}(\rho_{\rm B}) \, [{\rm g/cm^3}]$

Equation of state (EOS) based on the variational many-body theory with realistic nuclear forces is provided. For uniform matter, the EOS is constructed with the cluster variational method starting from the Argonne v18 two-body nuclear potential and the Urbana IX three-body nuclear potential. Non-uniform nuclear matter is treated in the Thomas-Fermi approximation. Alpha particle mixing is also taken into account. See Togashi et al., Nucl. Phys. A 961 (2017) 78 for details. This EOS table is open for general use in any studies for nuclear physics and astrophysics, provided that our paper is referred to in your publication.

User's Guide (read me first)

(HT et al., NPA961 (2017) 78)

Number

91 + 1

66

110

Mesh

0.04

0.01

0.10

guide.pdf

EOS tables

eoszip

Table A.1: Ranges of temperature T, proton fraction Y_p , and baryon mass density ρ_B in the table of the variational EOS. At the top of the last column, "+1" represents the case at T = 0 MeV.

Maximum

2.60

0.65

16.0

Minimum

-1.00

0

5.1

0		A	-
	on	та	СТ
-	-		~ -

Hajime Togashi

Nishina Center for Accelerator-Based Science, RIKEN

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Home Page of Variational EOS Table

http://www.np.phys.waseda.ac.jp/EOS/

Phase Diagram and Mass Number

3. Systematic study for non-uniform matter

K. Oyamatsu & K. Iida PRC 75 (2007) 015801

Parameterized EOS for uniform matter at 0 MeV (energy per particle)

 $E(n_{\rm B}, Y_{\rm p}) = E_{\rm F} + [1 - (1 - 2Y_{\rm p})^2]v_{\rm s}(n_{\rm B}) + (1 - 2Y_{\rm p})^2v_{\rm n}(n_{\rm B})$

 $E_{\rm F}$: Kinetic energy per particle for Fermi-gas

Potential energy per particle for symmetric and neutron matter

$$v_{s}(n_{B}) = a_{1}n_{B} + \frac{a_{2}n_{B}^{2}}{1 + a_{3}n_{B}}$$
 $v_{n}(n_{B}) = b_{1}n_{B} + \frac{b_{2}n_{B}^{2}}{1 + b_{3}n_{B}}$

- Parameters $(a_1, a_2, a_3, b_1, b_2, b_3)$: Thomas-Fermi calculation for nuclei

Parameterized EOS for uniform matter (free energy per particle)

$$F(n_{\rm B}, Y_{\rm p}, T) = F_{\rm F} + [1 - (1 - 2Y_{\rm p})^2]v_{\rm s}(n_{\rm B}) + (1 - 2Y_{\rm p})^2v_{\rm n}(n_{\rm B})$$

 $F_{\rm F}$: Free energy per particle for Fermi-gas

Parameterized EOS for uniform matter at 0 MeV

Thomas-Fermi calculations for non-uniform matter with these EOSs

Mass Number of Nuclei in Supernova Matter

The smaller value of $L \rightarrow$ Larger mass number in neutron-rich matter

Critical density with respect to the phase transition

The smaller value of $L \rightarrow$ Higher critical density in neutron-rich matter

Summary

A new nuclear EOS for astrophysical simulations is constructed with realistic nuclear forces (AV18 + UIX).

- uniform nuclear matter : the cluster variational method
- Non-uniform nuclear : the Thomas-Fermi calculation

Due to the smaller value of L

- Masses of heavy nuclides are slightly larger in neutron-rich nuclear matter.
- The critical density from non-uniform matter to uniform matter is higher.

Our SN-EOS is available at

http://www.np.phys.waseda.ac.jp/EOS/

NSE model based on the variational EOS for uniform matter https://sites.google.com/site/furusawashun/eosdata