

2019 Joint workshop of FKPPL and TYL/FJPPL

<u>New project [D_RD_20]:</u> New challenge for Inner Pixel Tracker construction

Koji Nakamura (KEK)

Yoichi Ikegami, <u>Koji Nakamura</u> (KEK) Kazuhiko. Hara, Hideki Okawa (Tsukuba) Dimitris Varouchas, Tobbias Fitschen (PhD student), Lydia Fayard, Mark Escalier, Abdenour Lounis, Pierr Petroff, <u>Reisaburo Tanaka</u> (LAL)

8th May, 2019

Framework : ATLAS Upgrade for HL-LHC

High Luminosity LHC (HL-LHC)

- Start around 2026- with new crab cavity in the interaction region.
- Target : \sqrt{s} =14TeV L=5-7x10³⁴cm⁻²s⁻¹ $\int Ldt$ =3000-4000fb⁻¹
- Physics program focus on the precise measurements of the Higgs couplings (e.g. Y_{τ} , Y_{b} and λ_{HHH}) and BSM searches.

• Tracking detector is key element

- To keep B/ τ -tagging performance up to μ =200 pileup in an event.
- Need to launch innovative solution for detectors, mechanics, efficient triggering and advanced analysis technics.

The ATLAS upgrade plans full replacement of Inner Tracker

- All silicon tracker (Pixel & Microstrip)
- <u>Requirements for Pixel detector</u>
 - Pixel Size : 50um x 50um (or 25um x 100um)
 - Radiation @ outer layer : 3x10¹⁵n_{eq}/cm²
 - Thickness : 100 or 150um
 - Low noise (<100e) \rightarrow 600e stable threshold
 - High Readout Rate : 5.2Gbps (or 4x1.28Gbps)

ATLAS inner tracker(ITK) project for HL-LHC

- Larger coverage area
 - Pixel : current 2.7m² → upgrade 8.2m²
 - Strip : current 34m² → upgrade 165m²
- Higher Forward coverage
 - Current $\eta < 2.5 \rightarrow$ upgrade $\eta < 4.0$
 - Better Pileup removal
- Mechanics : inclined
 - Reduce material
 - Higher tracking resolution.

8th May, 2019

D_RD_15 program (2014-2018)

<u>Collaboration</u>

- Planar type Silicon Pixel detector R&D for ATLAS detector upgrade in France-Japan collaboration
- <u>Goals</u>
 - Performance : evaluate & improve sensor design for radiation tolerance up to $5x10^{15}n_{eq}/cm^2$ fluence.
 - Productions : work on common sensor productions

D_RD_15 program (2014-2018)

D_RD_15 program (2014-2018)

- Project to build the demonstrator of the longeron.
- Both LAL and KEK are the contributors.
- Mainly : the electrical and heater modules provided.
- These are the good joint effort towards the pixel detector construction.

longeron

Shared Effort Both FR-JP teams are sharing their efforts

7 modules prototype

8th May, 2019

UNIVERSITAT -SLAC

universitätbon

u

PSC

technische universität

FJPPL 2019

for layer 2 and layer 3 (1.6 m) 4 cooling lines

52 flat guad and 124 inclined double modules

D_RD_20 program proposal

- Building production modules based on the developed pixel detector.
 - 2019-2020 : preparation of production
 - 2021-2024 : Production of the modules
- Constructing ITK pixel detectors is an extremely challenging project
 - >10000 quad planar pixel modules to be produced. About 20% of modules are build by us.
 - Finalize the design and construction method.
 - Development of Quality Control and Quality Assurance.
- Mainly we ask funding for exchange people between FR-JP
 - Share experience/common development

Production schedule

8th May, 2019

Production schedule

8th May, 2019

Finalize the design and construction method.

8th May, 2019

Final Sensor design

- Basic Sensor structure is almost final after years of development.
- Current fine pitch (50umx50um) pixel size sensors are attached to half size prototype ASIC (RD53A).
- Full size sensor and ASIC need to be produced in 2019.
 - RD53B (ITKpix-v1) and 7th HPK mask.

8th May, 2019

Module Assembly

- Assembly of Quad module to the Flex Printed circuit.
 - Radiation hard glue choice
 - CTE matching to avoid stress for modules.
 - Cooling cell on the back side of modules

Module loading to support

Cooling Cell

8th May, 2019

Assembly tool

Development of Quality Control and Quality Assurance.

QC/QA flow for module production

Sensor QC/QA preparation

- Most of the measurement : rely on the vender
- IV/CV measurement cross check
 - 1% of sensor will be re-measured by ATLAS ITK
- Test structure to control the quality of the wafer during production.
 - IV/CV measurement for Miniature diode
 - To measure inter-pixel capacitance, low noise probe station necessary.

<u>Test structure</u>

8th May, 2019

Contribution for ATLAS pixel Market survey

- Work carried within task force IN2P3 French Cluster (LAL+ LPNHE)
 - Characterization of pixel sensors of various designs through different actions, namely:
 - Visual Inspection
 - Planarity and bow evaluation
 - IV, CV measurements
- Outcome from MS measurement
 - Measurement consist with the values by foundry.
 - Infrastructure ready and operational for mass production

Special bias rails:

Japan will measure samples from the other vender who delivers samples later this year.

8th May, 2019

Module measurement

- Probe card for RD53A module has been developed in Japan.
 - Immediate feedback of Bumpbonding quality in HPK.
 - Highly needed tool that could be provided by KEK for the community for ASIC Chip testing.
- Test for RD53A module successfully done.
 - Will be tested modules for the local support demonstrator.
- Probe card for Pre-production ASIC will be designed this year.

Probe station at KEK

Irradiation and Testbeam

- CYRIC@Tohoku Univ.
 - An irradiation facility with 70MeV proton beam (~1µA beam current).
 - 3-5 hours for 3x10¹⁵n_{eq}/cm² irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N_2 gas.
 - Scanning over full pixel surface at irradiation.
- Testbeam
 - Extremely important to test device performance
 - Efficiency/Noise monitoring during production
 - Testbeam facility
 - CERN SPS : 120GeV π + beam
 - DESY : 4-5GeV e+ beam
 - FNAL : 120GeV proton beam
 - Telescope planes (Track pointing to device)
 - EUDET based on MIMOSA26 monolithic CMOS detector placed in beamline at CERN/DESY/SLAC (~3um pointing resolution).
 - Huge experience of the testbeam operation as having testbeam 3-4 times a year

Funding request

8th May, 2019

Exchange Experience(D_RD_15)

<u>Visit Versailles in 2017</u>

Junki Suzuki, Hitomi Tokutake, and K.N. + Tasneem Rashid

To perform SIMS measurement @ Versailles

Thanks to Fraçois Jomard for help and the operation of measurement

<u>Visit LAL in 2016</u>

Kazuyuki Sato, Junki Suzuki, Hitomi Tokutake, Hiromi Sawai and K.N. Original aim is to perform SIMS measurement @ Versailles but it was temporary broken unfortunately. Visiting probe-station, SMD lab etc.

<u>Visit KEK in 2015</u>

Clara Nelist

After irradiation of LAL's module in Japan, testing of the devices as well as visiting J-park @ Tokai

8th May, 2019

Exchange Experience(D_RD_15)

Visit Versailles in 2017

Junki Suzuki, Hitomi Tokutake, and K.N. + Tasneem Rashid

To perform SIMS measurement @ Versailles

Thanks to Fraçois Jomard for help and the operation of measurement

Visit L<u>AL in 2016</u>

Kazuyuki Sato, Junki Suzuki, Hitomi Tokutake, Hiromi Sawai and K.N. Original aim is to perform SIMS measurement @ Versailles but it was temporary broken unfortunately. Visiting probe-station, SMD lab et

Visit KEK in 2015

Clara Nelist

After irradiation of LAL's module in Japan, testing of the design as well as ark @ Tokai

Budget request 2019

Funding Request from France						
					Funding Request from Japan	
Description	€/unit	Nb of units	Total (€)	Requested to	Description	k¥/unit
Visit to KEK/Tsukuba	150 / day	5 day	750	LAL	Visit to LAL (3 seniors)	45/day
Visit to Japan	1000	1	1000	Uni. Paris Saclay	per diem	,,
Students in KEK/Tsukuba	650/month	12 weeks	7800	Uni. Paris Saclay	Student (1) Stay at LAL, per diem	150/month
Student Stay in KEK/Tsukuba	1500	1	1500	KEK/Tsukuba	Travels	160
Student Travels	800	1	800	Uni. Paris Saclay	Total	
Total			4400			

Description	k¥/unit	Nb of units	Total (k¥)	Requested to
Visit to LAL (3 seniors), per diem	45/day	5days	225	KEK
Student (1) Stay at LAL, per diem	150/month	2 months	300	KEK
Travels	160	4	640	KEK
Total			1165	

Additional Funding from France			Additional Funding from Japan		
Provided by / requested to	Туре	€	Provided by / requested to	Туре	k¥
LAL/ATLAS PIXEL/IN2P3	TCADSIM licence	1500	Tsukuba/ATLAS	Quality Control setup	800
LAL/ATLAS/PIXEL /IN2P3	DAQ Front board For Irrad tests	1500	KEK/ATLAS	CYRIC irradiation	450
LAL/ATLAS PIXEL/IN2P3	New DAQ PC	1000	Tsukuba/ATLAS	Test beam	800
Total		4000	Total		2050

8th May, 2019

Strategy for ITK pixel module construction scenario within IN2P3 French Cluster. •SI WAFER OPTICAL RECEPTION-INSPECTION TEST - INDIVIDUAL SENSORS OR Si Wafer WAFERS TESTS Point tests Location: LAL LPNHE •PIXEL MATRIX WITH INDIUM BALLS SENSORS PIXEL FLIP-CHIP on ASIC CHIP Flip Chip connexion INDUSTRY Point test machine Clean at LAL •CONNECTION OF THE MODULE ON THE READOUT CARD (WIRE BOND) Construction room LAL LPNHE+ IRFU module Ultrasonic •FLEXIBLE CABLE GLUING FOR HV AND CLOCK SIGNALS weldingIC LAL LPNHE+ IRFU WELDING Ballbonder 5610 DEBUG Wedgebonder 5630 Module test bunch with béta source, ... DA Wedgebonder 56 COMPLETE CARACTERISATION AND SELECTION OF **Module Pixel** MODULES ACCORDING TO PERFORMANCES LAL LPNHE ixelated 300 µm thick Si Heavy wire bonder 5650/HR tector chip (256 x 256 Ultrasonic welding machine (CEA/IRFU) MODULE EXPEDITION towards integrating centers (CERN, CPPM, etc..) TO built the full tracker Read-out ASIC chip TimePix oltage (~100V) detector

LA BORATOIRE DE L'ACELERATEUR LI L'ACELERATEUR

Abdenour LOUNIS

Testbeam campaign

- Extremely important to test device performance
 - DAQ and operation
 - In-pixel and/or Edge efficiency
- Testbeam facility
 - CERN SPS : 120GeV π+ beam
 - DESY : 4-5GeV e+ beam
 - SLAC : 5-13GeV e- beam
 - FNAL : 120GeV proton beam
- Telescope planes (Track pointing to device)
 - EUDET based on MIMOSA26 monolithic CMOS detector placed in beamline at CERN/DESY/SLAC (~3um pointing resolution).
 - Huge experience of the testbeam operation as having testbeam 3-4 times a year
- **Example** : November testbeam @CERN
 - LAL&KEK devices are in the same runs together with UK, Norway's samples.
 - Excellent data taking was achieved.

KEK-flex

Secondary Ion Mass Spectrometry and Simulation

- SIMS measurement
 - Analytical technique to characterize the impurities near surface(<30um) by ionized secondary particles.
 - Good detection sensitivity for B, P, Al, As, Ni, O, Si etc down to 10¹³ atoms/cm³ with 1-5nm depth resolution.
- Synopsys TCAD simulation
 - Process simulation:
 - Simulate implantation and resulting concentrations.
 - Can compare to SIMS result.
 - Device Simulation :
 - Simulate Electric field to understand the performance of silicon device.
 - Possible to perform simulation of charge correction of MIP signal.

SIMS system at Versailles

8th May, 2019

CYRIC : Irradiation Facility in Japan

FJPPL 2019

- CYRIC@Tohoku Univ.
 - An irradiation facility with 70MeV proton beam (~1µA beam current).
 - 3-5 hours for 3x10¹⁵n_{eq}/cm² irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N₂ gas.
 - Scanning over full pixel surface at irradiation.
- LAL's Active Edge Pixel Modules
 - Irradiated LAL's module twice in 2016 and 2017.
 - First irradiation, observed disconnection <u>M</u>
 of bumps after irradiation.
 - Second irradiation, it was successfully done and measured the device at DESY testbeam in March 2017.

<u>Feb 2017</u> LAL's Pixel Mod. (Active Edge)

Another layer of Collaboration? : LGAD

Low Gain Avalanche Detectors

- To solve pileup issue in future high luminosity hadron collider, good time resolution detector is important.
- The ~50ps time resolution makes it possible to identify each collision in an event.

- Smaller time walk (higher field)
- Smaller time jitter (low noise)
- p+ layer beneath n+ implant creates ~300kV/cm electric field (Gain ~ 10)

CNM/FBK/HPK produced devices

- LAL group : Simulation&Testing CNM device
- **Tsukuba group : Testing HPK device**

8th May, 2019