Silicon Strip Detector for J-PARC muon *g*-2/EDM Experiment

Y. Sato

(KEK, IPNS)

On behalf of the muon g-2/EDM (E34) collaboration July 7th 2018

Muon g-2 Anomaly and Search for EDM

- Muon g-2 is sensitive to new physics beyond SM.
 - 3.7 deviation between muon g-2 measured by BNL E821 and SM prediction.
 - Theoretical prediction is being improved by continuous efforts.
 - > Need more precise/independent measurement.
- Muon EDM is also important.
 - If non-zero EDM exists, it indicates CP violation in the lepton sector assuming CPT invariance.
 - Current exp. limit : $d < 1.8 imes 10^{-19} e \cdot \mathrm{cm} (95\% \ \mathrm{C.\,L.})$ by BNL E821.

$$a_{\mu} = \frac{g-2}{2}$$

@Phys. Rev. D 97 114025 (2018)

New Approach for muon g-2 and EDM Measurements

Anomalous precession frequency

$$\vec{\omega} = -\frac{e}{m_{\mu}} \left[\begin{array}{c} \mathbf{a_{\mu}} \vec{B} \\ \mathbf{g-2} \end{array} \right] - \left(\begin{array}{c} \mathbf{a_{\mu}} - \frac{1}{\gamma^2 - 1} \\ \end{array} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
EDM

"Magic momentum" by Fermilab E989

- $\gamma = 29.3 (P = 3.09 \text{ GeV/c})$
- Improvement of the BNL method

$$\vec{\omega} = -\frac{e}{m_{\mu}} \left[\frac{\mathbf{a}_{\mu} \vec{B}}{2} + \frac{\mathbf{\eta}}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Started to take data.

"Zero E-field" by J-PARC E34

- E = 0 at any γ (off magic γ)
 - P = 300 MeV/c
- New methods with different systematics

$$\vec{\omega} = -\frac{e}{m_{\mu}} \left[\mathbf{a}_{\mu} \vec{B} + \frac{\mathbf{\eta}}{2} (\vec{\beta} \times \vec{B}) \right]$$

- Approved as one of priority projects in the future by KEK.
 - Received very positive replies from TDR review committee and waiting for full approval from the lab.

J-PARC E34 Experiment

- New muon g-2/EDM experiment at J-PARC with an entirely new method :
 - off-magic momentum with ultra-cold muon beam.

J-PARC Facility (KEK/JAEA)

Positron Tracking Detector

• Compact storage ring gives good uniformity of B-field, but lead to dense positron track from muon decay.

Requirements to Positron Tracking Detector

- High position resolution and tracking efficiency
 - 100-300 MeV positrons
- High hit rate capability and early-to-late stability
 - Event rate 1.4 MHz 10 kHz/strip
- Operational in 3T magnetic field and no contamination of EM field to the muon storage region.

 Radial tracking vanes (Silicon strip)
 - $-\Delta B/B < 1$ ppm and E-field << 10 mV/cm
- Readout synchronized with J-PARC pulsed muon beam.
 - Repetition rate: 25 Hz
- → We use silicon strip detectors with a vane structure.
 - 40 vanes: 640 silicon strip sensors and 5120 ASICs.

p(e+) > 200 MeV/c

μ decay vertex

Vane Structure

- The vane consists of 4 quarter-vanes and each quarter-vane has 4 silicon strip sensors and 32 ASICs.
- Two-dimensional position can be measured by two layers of the sensors with different orientations of strips.

Structure of quarter-vane

→ Funded to construct a part of detector system.

Silicon Strip Sensor

- Single sided silicon strip sensor with double metal structure produced by Hamamatsu Photonics.
 - We have already produced ~190 sensors.

Specification	
Sensor type	p on n
Size	98.77 mm × 98.77 mm
Active area	97.28 mm × 97.28 mm
Strip pitch	0.19 mm
Strip length	48.575 mm
# of strips	512 × 2 blocks
thickness	0.32 mm
Detector capacitance	17 pF

- Quality assurance (QA) system is being developed.
 - I-V & C-V characterization, strip leakage current, strip resistance, coupling

capacitance, interstrip capacitance

Front-end ASIC "SliT"

Requirements

- Dynamic range > 4 MIP
- Noise $< 1600 e^{-} @C_{det} = 30 pF$
- Time walk < 5 ns
- Peaking time < 50 ns
- Power consumption < 5 mW/ch

Specification

- Silterra 0.18 µm CMOS process
- 128 ch/ASIC
- Binary output with 5 ns time sampling.
- 40.96 μs buffer memory
 - Stored data is readout before the next beam comes.

Layout of SliT128A

Full-scale prototype "SliT128A"

- Verified all function and has a performance close to the requirement.
- Used for test module (\rightarrow next page)

- → Final version of ASIC "SliT128B" will be fabricated within this JFY.
- Toward the fabrication of SliT128B, we are testing final prototype of TEG chip now.

Test module

- The silicon strip sensor is connected with 8 full-scale prototype ASICs
 "SliT128A" on two readout boards through a pitch adapter by wire-bonding.
- Test module is used in real experiment for precise measurement of muonium hyperfine structure (MuSEUM) at J-PARC with muon beam.

Flexible Printed Circuit (FPC)

- Signals from sensors are transmitted to ASIC followed by FPGA-based readout board through FPCs.
- Prototype sensor FPC is fabricated by Fujikura Ltd..
 - Minimum L/S ~ 35/35 um
- Mass production of the sensor FPC will be done within this JFY.

Other FPCs is being designed.

Track Reconstruction Tool

- Track reconstruction algorithm is being developed.
 - With the developed track finding algorithm based on Hough transformation,
 more than 90% efficiency is expected even in the highest pileup condition.

Event display

(0.6 tracks/ns, time window= 10 ns)

Summary and prospect

- J-PARC E34 experiment measures muon g-2 and EDM with completely different approach: "off-magic momentum with ultra-cold muon beam".
 - Approved as one of priority projects in the future by KEK.
 - Received very positive replies from TDR review committee (FRC) and waiting for full approval from the lab.
- Silicon strip detector is used to detect positrons from muon decay.
 - Funded to construct a part of detector system.

 Toward the assembly of the real vane, the development of each component are going well.

• Silicon strip sensor, front-end ASIC, FPC, mechanical design, test module, cooling system, DAQ system, software, ...

• Assembly of first real quarter-vane will be started at next JFY $_{\mu^+}$

Backup

Principle of muon g-2 Measurement

- 1. Inject **polarized muons** to the storage ring.
 - $\pi^+ \rightarrow \mu^+ \nu_\mu$ decay
- 2. **Muon spin precession relative to momentum in cyclotron** is proportional to g-2 under "special" condition.

$$\vec{\omega} = \vec{\omega}_{\text{spin}} - \vec{\omega}_{\text{cyclotron}} = \left(\frac{g-2}{2}\right) \frac{e\vec{B}}{m_{\mu}c} = a_{\mu} \frac{e\vec{B}}{m_{\mu}c}$$

3. Detect high energy e^+ from μ^+ decay

- \triangleright Precise measurement of g-2 needs precise determinations of ω and B.
 - Muon-to-proton magnetic moment ratio is also used instead of e/m_{μ} .

J-PARC muon facility

MUSE (MUon Science Establishment) in the MLF

H-line

- surface μ⁺ (>10⁸ μ⁺/s), decay μ⁺/μ⁻, e⁻
- for high intensity & long beamtime experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & transmission muon microscopy
- under construction

D-line

- decay μ⁺/μ⁻, surface μ⁺
- D1 area for μSR
- D2 for variety of science

New Muon Beam Line ~H-Line~

Three muon experiments

- g-2/EDM
- MuSEUM (Mu-HFS)
- DeeMe (muon cLFV)

Construction status of H-line

On-going

- Construction of a new electric power sub-station for H-line has started!
 - H-line needs about 5 MW electricity, but the surplus power of existing electric sub-stations in the MLF is only 1 MW.

Renovation of the MLF wall for electric power transmission line

Construction of the bedding of the electric sub-station

The collaboration

Experimental sequence

Fake EDM Signal by Misalignment

• EDM is measured from up-down asymmetry "A_{UD}".

The alignment must be controlled with 10 μ rad accuracy to measure EDM with $10^{-21}e \cdot \text{cm}$.

Track-back

Superimposed event displays of 105 positron tracks

Sensor QA system

g-2 test module 1 in MuSEUM Experiment

