HANUL Meeting

April 8th, 2018

Seongbae Yang Department of Physics Korea University

1. Belle Analysis, $\Omega^{*-} \rightarrow \Omega^- \gamma$

Signal MC Study, $\Omega^{*-} \rightarrow \Omega^- \gamma$

EvtGen

→ Xi*- in a particle table changed to Ω^{*-} (mass: 1.8 GeV, spin: 3/2, charge: -1)

add	p Baryon	Xi0	3322	1. 31483	0	0	0	1	87.1 339
add	p Baryon	anti-XiO	- 3322	1. 31483	0	0	0	1	87.10
add	p Baryon	Xi-	3312	1. 32131	0	0	- 3	1	49.1 338
add	p Baryon	anti-Xi+	- 3312	1. 32131	0	0	3	1	49.1 0
add	p Baryon	Xi*O	3324	1. 5318	0.0091	0.06	0	3	0 369
add	p Baryon	anti-Xi*O	- 3324	1. 5318	0. 0091	0.06	0	3	0 0
add	p Baryon	Xi-	3314	1. 5350	0.0099	0.06	- 3	3	0 368
add	p Baryon	anti-Xi+	- 3314	1. 5350	0.0099	0.06	3	3	0 0
add	p Baryon	Xi*-	3314	1.800	0.0	0.0	- 3	3	0 368
add	p Baryon	anti-Xi*+	- 3314	1 800	0 0	0 0	3	3	0 0
add	p Baryon	Xi(1820)0	13324	1.823	0. 024	0.34	0	3	0 0
add	p Baryon	anti-Xi(1820)0	- 13324	1.823	0. 024	0.34	0	3	0 0
add	p Baryon	Xi(1820)-	13314	1.823	0. 024	0.34	- 3	3	0 0
add	p Baryon	anti-Xi(1820)+	- 13314	1.823	0. 024	0.34	3	3	0 0

→ Start with $\Upsilon(1S)$ $\Upsilon(1S)$ →Xi*- + X (inclusive) Xi*- → $\Omega^-\gamma$ (Ω^- decay controlled in Geant3)

1. Belle Analysis, $\Omega^{*-} \rightarrow \Omega^- \gamma$

→ Produced particles in EvtGen

ID	ISTHEP	IDHEP	MOTHER	MO(1)	MO(2)	DA(1)	DA(2)	P(1)	P(2)	P(3)	P(4)	P(5)	V(1)	V(2)	V(3)	V(4)
1	2	553	0	0	0	2	2	0.16	0.00	4. 02	10. 28	9.46	- 0. 03	0.01	- 3. 79	- 0. 63
2	2	92	1	1	1	3	10	0.16	0.00	4. 02	10. 28	9.46	- 0. 03	0. 01	- 3. 79	- 0. 63
3	2	311	2	2	2	11	11	0.55	0.25	0.57	0.97	0.50	- 0. 03	0.01	- 3. 79	- 0. 63
4	2	- 311	2	2	2	12	12	0.21	0.20	0.40	0.70	0.50	- 0. 03	0.01	- 3. 79	- 0. 63
5	2	311	2	2	2	13	13	- 0. 85	- 1. 15	2.16	2.64	0.50	- 0. 03	0.01	- 3. 79	- 0. 63
6	1	211	2	2	2	0	0	0.42	- 0. 28	- 0. 38	0.64	0.14	- 0. 03	0.01	- 3. 79	- 0. 63
7	2	223	2	2	2	14	16	0.65	0.57	0.57	1.31	0.79	- 0. 03	0.01	- 3. 79	- 0. 63
8	1	- 211	2	2	2	0	0	- 0. 57	0.00	- 0. 05	0.59	0.14	- 0. 03	0.01	- 3. 79	- 0. 63
9	2	- 3114	2	2	2	19	20	0.27	0.40	0.65	1.56	1.34	- 0. 03	0.01	- 3, 79	- 0, 63
10	2	3314	2	2	2	21	22	- 0. 51	0.01	0.10	1.87	1.80	- 0. 03	0.01	- 3. 79	- 0. 63
11	1	310	3	3	3	0	0	0.55	0.25	0.57	0.97	0.50	- 0. 03	0.01	- 3. 79	- 0. 63
12	1	310	4	4	4	0	0	0.21	0.20	0.40	0.70	0.50	- 0. 03	0.01	- 3. 79	- 0. 63
13	1	130	5	5	5	0	0	- 0. 85	- 1. 15	2.16	2.64	0.50	- 0. 03	0.01	- 3. 79	- 0. 63
14	1	- 211	7	7	7	0	0	0.02	0.16	0.01	0.21	0.14	- 0. 03	0.01	- 3. 79	- 0. 63
15	1	211	7	7	7	0	0	0.64	0.21	0.38	0.79	0.14	- 0. 03	0.01	- 3. 79	- 0. 63
16	2	111	7	7	7	17	18	- 0. 01	0.21	0.18	0.31	0.13	- 0. 03	0.01	- 3. 79	- 0. 63
17	1	22	16	16	16	0	0	- 0. 01	0.23	0.16	0.28	0.00	- 0. 03	0.01	- 3. 79	- 0. 63
18	1	22	16	16	16	0	0	- 0. 01	- 0. 02	0.02	0.03	0.00	- 0. 03	0.01	- 3. 79	- 0. 63
19	1	- 3122	9	9	9	0	0	0.07	0.36	0.50	1.28	1.12	- 0. 03	0.01	- 3. 79	- 0. 63
20	1	211	Q	Q	Q	0	0	0,20	0.04	0.15	0.29	0.14	- 0, 03	0.01	-3,70	- 0, 63
21	1	3334	10	10	10	0	0	- 0. 44	- 0. 05	0.19	1.74	1.67	- 0. 03	0.01	- 3. 79	- 0. 63
22	1	22	10	10	10	0	0	- 0. 07	0.06	- 0. 09	0.13	0.00	- 0. 03	0.01	- 3. 79	- 0. 63

 $\Upsilon(1S) \rightarrow Xi^{*-} + X \text{ (inclusive)}$ Xi^*- $\rightarrow \Omega^{-}\gamma$

1. Belle Analysis, $\Omega^{*-} \rightarrow \Omega^- \gamma$

→ Produced particles in Geant, $\Omega^- \rightarrow \Lambda K^-$

ID	ISTHEP	IDHEP	MOTHER	MO(1)	MO(2)	DA(1)	DA(2)	P(1)	P(2)	P(3)	P(4)	P(5)	V(1)	V(2)	V(3)	V(4)
1 2 3 4 5 6 7 8 9 10 11 12 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1	553 92 - 3214 3314 313 113 213 111 113 - 3122 111 22 22	0 1 2 2 2 2 2 3 3 11	0 1 2 2 2 2 2 3 3 11	0 1 2 2 2 2 2 2 3 3 11	2 3 10 14 16 18 20 24 26 28 12 0 0	2 9 11 15 17 19 21 25 27 29 13 0 0	0. 16 0. 16 0. 68 - 0. 34 0. 18 - 0. 02 0. 37 - 0. 59 - 0. 12 0. 59 0. 09 0. 04 0. 05	0.00 0.00 - 0.01 0.30 0.02 - 0.22 0.01 - 1.04 0.93 0.16 - 0.17 - 0.18 0.00	4. 02 4. 02 0. 73 - 0. 07 - 0. 29 0. 37 0. 13 2. 09 1. 06 0. 57 0. 16 0. 09 0. 06	10. 28 10. 28 1. 68 1. 86 0. 95 0. 91 0. 84 2. 41 1. 63 1. 39 0. 29 0. 20 0. 08	9.46 9.46 1.35 1.80 0.89 0.80 0.74 0.13 0.80 1.12 0.13 0.00 0.00	0. 45 0. 45	- 0. 08 - 0	- 2. 64 - 2. 64	- 0. 44 - 0. 44
14	1	3334	4	4	4	30	31	- 0. 33	0.40	- 0. 05	1.75	1.67	0.45	- 0. 08	- 2. 64	- 0. 44
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1 1 1 1 2 1 1 1 1 1 - 10 - 10	22 321 - 211 211 211 111 22 22 22 22 211 - 211 211 - 2212	4 5 6 7 21 21 21 8 9 9 10 10	4 5 6 7 21 21 8 9 9 10 10	4 5 6 7 21 21 8 9 9 0 0	0 32 35 36 38 22 0 39 0 41 46 50 47	0 34 0 35 37 38 23 0 0 40 0 40 40 45 46 50 49	- 0. 02 0. 10 0. 09 - 0. 20 0. 18 - 0. 12 0. 49 0. 17 0. 32 - 0. 53 - 0. 07 - 0. 40 0. 28 0. 17 0. 42	- 0. 10 0. 29 - 0. 26 - 0. 01 - 0. 21 - 0. 07 0. 08 - 0. 03 0. 12 - 0. 82 - 0. 22 0. 72 0. 21 0. 08 0. 09	- 0. 02 - 0. 10 - 0. 19 - 0. 16 0. 53 - 0. 16 0. 29 0. 11 0. 17 1. 72 0. 37 0. 60 0. 46 0. 04 0. 52	0. 11 0. 59 0. 37 0. 29 0. 62 0. 25 0. 25 0. 21 0. 38 1. 98 0. 43 1. 03 0. 60 0. 24 1. 16	0.00 0.49 0.14 0.14 0.14 0.13 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.14	0. 45 0. 45 68. 92 68. 92	- 0. 08 - 0. 08 19. 05 19. 05	- 2. 64 - 3. 80 63. 80	- 0. 44 - 0. 44 162. 37 162. 37
30	- 10 - 10	- 321	14 14	14 14	0	67 65	67 66	0.04	-0.00	-0.11	0.51	0.49	- 11. 34	14.36	- 4. 45 - 4. 45	62.67 62.67
32 33 34 35 36 37 38	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	111 211 111 - 13 22 22 - 13	16 16 16 18 19 19 20	16 16 16 18 19 19 20	0 0 0 0 0 0 0	73 0 75 77 0 0 78	74 0 76 77 0 0 78	- 0. 02 0. 21 0. 06 0. 07 0. 15 0. 16 0. 01	0.00 0.12 0.04 0.10 0.10 0.00 0.00	- 0. 06 - 0. 00 - 0. 05 - 0. 06 0. 20 0. 07 - 0. 02	0. 15 0. 28 0. 16 0. 18 0. 27 0. 18 0. 11	0. 13 0. 14 0. 13 0. 11- 0. 00 0. 00 0. 11-	270. 98 270. 98 270. 98 427. 63 942. 92 942. 92 267. 57	355. 40- 355. 40- 355. 40- 666. 48- - 31. 512 - 31. 512 450. 21-	165.01 165.01 165.01 775.841 021.662 021.662 1110.01	903.28 903.28 903.28 903.28 405.62 347.99 347.99 7072.9

\rightarrow Cut condition

Kaon: $R(K|\pi) > 0.9$, R(K|p) > 0.4, R(e) < 0.9, $|ip_r| < 20.0$ cm, $|ip_z| < 20.0$ cm, and more than 1 hit for both SVD r-phi and z.

Lambda: GoodLambda=2 and $M(p\pi^{-})$ in ~±5 σ

```
Omega: 1.665 < M(\Lambda K^{-}) < 1.680
```

```
gamma: E>50 MeV
```

→ Efficiency

Total 100,000 events generated and ~5,300 events remained.

HypTPC Simulation

■ Work list →우승, 성욱

-Make the 'detector construction' near the hypTPC as close to real as possible. (Liq. H2 target, 12C target, TPC case, ...).

-Add the KURAMA part and the new detectors (FAC, WAC, ...). →병민

-Make the event generator part. If possible, separate the event generator part and the Geant4 part.

→신형

-Make a digitization (simulation data \rightarrow real data). Especially, the hypTPC part.

→성배, 신형

-Make a tracking tool for the hypTPC (cluster \rightarrow tracking). If possible, prepare a full analysis program.

Work place

→nuclear.korea.ac.kr server

- -Temporarily on samba server.
- -Copy the simulation program to your work folder.

/home/samba.old/JPARC_E42/HypTPC_Simulation/Geant4/

-Bash setting

/home/samba.old/JPARC_E42/software/bash_example/

bashrc_example.sh

- →KEKCC server
- -Simulation program

/group/had/sks/Users/sbyang/HypTPC_Simulation/sim_dev/ Geant4

-Bash example

/home/had/sbyang/.bashrc

 \rightarrow GITHUB will be soon prepared