The nuclear symmetry energy and the breaking of the isospin symmetry: how do they reconcile with each other?

Xavier Roca-Maza Università degli Studi di Milano and INFN, Milano section in collaboration with Gianluca Colò and Hiroyuki Sagawa

NuSYM2018 8th International Symposium on Nuclear Symmetry Energy 10-13 September 2018 Busan, South Korea

Table of contents:

→ **Brief introduction**

- → **Nuclear Equation of State: the symmetry energy**
- → **The neutron skin thinckess**
- → **The isobaric analog state**
	- → **Displacement energy**
	- → **Corrections to isospin symmetric** H_{eff}
	- → **Refitted interaction**
	- → **Results**

→ **Conclusions**

The Nuclear Equation of State: Infinite System

Uncertainties on S(ρ) around saturation (mainly due to L) **impact** on many nuclear physics and astrophysics **observables**.

Example: L **and the neutron skin in** ²⁰⁸**Pb**

$$
\Delta r_{np} \equiv \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}
$$

Macroscopic model: $\Delta r_{np} \sim \frac{1}{12} \frac{(N-Z)}{A} \frac{R}{J} L$ $(L \propto p_0^{neut})$

Physical Review Letters **106***, 252501 (2011)*

The faster the symmetry energy increases with density (L), the largest the size of the neutron skin in (heavy) nuclei.

[Exp. from strongly interacting probes: ∼ 0.15 − 0.22 **fm (***Physical Review C* **86** *015803 (2012)***)].**

The isobaric analog state energy: E_{IAS}

• **Analog state** can be defined: $|A\rangle = \frac{T_{-}|0\rangle}{\sqrt{1+\Gamma}}$ $\langle 0|T_+T_-|0\rangle$

• **Displacement energy or** E_{IAS}

$$
E_{IAS} = E_A - E_0 = \langle A|\mathcal{H}|A\rangle - \langle 0|\mathcal{H}|0\rangle = \frac{\langle 0|T_+[\mathcal{H}, T_-]|0\rangle}{\langle 0|T_+T_-|0\rangle}
$$

 $\texttt{E}_{\rm IAS} \neq 0$ only due to Isospin Symmtry Breaking terms $\boldsymbol{\mathcal{H}}$ E exp IAS **usually accuratelly measured !**

Contributions

[H, T−] , 0 ? essentially **Coulomb potential** but not only

Table: Estimate of the different effects on E_{IAS} in ²⁰⁸Pb.

Physical Review Letters **23**, 484 (1969).

 $E_{\text{IAS}}^{\text{exp}} = 18.83 \pm 0.01 \text{ MeV}$. *Nuclear Data Sheets 108, 1583 (2007)*.

Coulomb direct contribution: very simple model

• Assuming indepentent particle model and good isospin for $|0\rangle$ $(\langle 0|T_+T_-|0\rangle = 2T_0 = N - Z)$

$$
E_{IAS}\approx E_{IAS}^{C,direct}=\frac{1}{N-Z}\int\left[\rho_{n}(\vec{r})-\rho_{p}(\vec{r})\right]U_{C}^{direct}(\vec{r})d\vec{r}
$$

where
$$
U_C^{\text{direct}}(\vec{r}) = \int \frac{e^2}{|\vec{r}_1 - \vec{r}|} \rho_{ch}(\vec{r}_1) d\vec{r}_1
$$

• Assuming also a uniform neutron and proton distributions of radius R_n and R_p respectively, and $\rho_{ch} \approx \rho_p$ one can find

$$
E_{IAS}\approx E_{IAS}^{C,direct}\approx \frac{6}{5}\frac{Ze^{2}}{R_{p}}\left(1-\sqrt{\frac{5}{12}}\frac{N}{N-Z}\frac{\Delta r_{np}}{R_{p}}\right)
$$

One may expect: **the larger the** Δr_{np} **the smallest** E_{IAS}

Phys. Rev. Lett. 120, 202501 (2018)

Nuclear models (EDFs) where the nuclear part is isospin symmetric and U_{ch} **is calculated from the** ρ_p

Corrections: within self-consistent HF+**RPA**

Within the $HF+RPA$ one can **estimate** the E_{IAS} accounting (in an effective way) for **short-range correlations and e**ff**ects of the continuum** (if a large sp base is adopted).

• **Coulomb exchange** exact (usually Slater approx.):

$$
U_C^{x,exact}\phi_i(\vec{r})=-\frac{\varepsilon^2}{2}\int d^3r'\ \frac{\phi_j^*(\vec{r}')\phi_j(\vec{r})}{|\vec{r}-\vec{r}'|}\phi_i(\vec{r}')
$$

• The **electromagnetic spin-orbit** correction to the nucleon single-particle energy (non-relativistic),

$$
\epsilon_i^{emso} = \frac{\hbar^2 c^2}{2 m_i^2 c^4} \langle \vec{l}_i \cdot \vec{s}_i \rangle x_i \int \frac{1}{r} \frac{dU_C}{dr} |R_i(r)|^2
$$

where x_i : $g_p - 1$ for Z and g_n for N; $g_n = -3.82608545(90)$ and $g_p = 5.585694702(17)$, $R_i \rightarrow R_{n1}$ radial wf.

Corrections:

• **Finite size** effects (assuming spherical symmetry):

$$
\begin{array}{lcl} \rho_{ch}(q) & = & \displaystyle \left(1-\frac{q^2}{8m^2}\right)\left[G_{E,p}(q^2)\rho_p(q)+G_{E,n}(q^2)\rho_n(q)\right] \\ & & \displaystyle - & \frac{\pi q^2}{2m^2}\sum_{l,t}\left[2G_{M,t}(q^2)-G_{E,t}(q^2)\right]\langle \vec{l}\cdot\vec{s}\rangle\int_0^\infty dx\frac{j_1(qx)}{qx}|R_{n1}(x)x^2|^2 \end{array}
$$

• **Vacuum polarization:** lowest order correction in the fine-structure constant to the Coulomb potential $\frac{eZ}{r}$.

$$
V_{vp}(\vec{r})=-\frac{2}{3}\frac{\alpha e^2}{\pi}\int d\vec{r}'\frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|}\mathcal{K}_1\left(\frac{2}{\lambda_e}|\vec{r}-\vec{r}'|\right)
$$

where e is the fundamental electric charge, α the fine-structure constrant, λ_e the reduced Compton electron wavelength and

$$
\mathcal{K}_1(x) \equiv \int_1^{\infty} dt e^{-xt} \left(\frac{1}{t^2} + \frac{1}{2t^4}\right) \sqrt{t^2 - 1}
$$

Corrections:

• **Isospin symmetry breaking** (Skyrme-like): **two parts** (contact interaction)

charge symmetry breaking + $V_{\text{CSB}} = V_{nn} - V_{nn}$

$$
V_{CSB}(\vec{r}_1, \vec{r}_2) \equiv \frac{1}{4} [\tau_z(1) + \tau_z(2)] s_0 (1 + y_0 P_{\sigma})
$$

τz Pauli in isospin space; Pσ are the usual projector operators in spin space.

charge independence breaking[∗] $V_{\text{CIB}} = \frac{1}{2}$ $\frac{1}{2}(V_{nn} + V_{pp}) - V_{pn}$ $[\tau_z(1) + \tau_z(2)] s_0 (1 + y_0 P_\sigma)$ $V_{\text{CIB}}(\vec{r}_1, \vec{r}_2) \equiv \frac{1}{2} \tau_z(1) \tau_z(2) u_0 (1 + z_0 P_\sigma)$ * general operator form $\tau_z(1)\tau_z(2) - \frac{1}{3}\vec{\tau}(1) \cdot \vec{\tau}(2)$. Our prescription $\tau_z(1)\tau_z(2)$ not change structure of HF+RPA.

• Opposite to the other corrections, **ISB contributions depends on new parameters that need to be determined!**

Isospin symmetry breaking in the medium:

• **keeping** things **simple**: **CSB and CIB** interaction just **delta function** depending on s_0 and u_0 . Different possibilities:

- → **Fitting** to (two) experimentally known **IAS energies**
- → **Derive from theory**

 \rightarrow **our option:** u_0 **to reproduce BHF** (symmetric nuclear matter) and s_0 **to reproduce** E_{IAS} in ^{208}Pb

Physics Letters B 445, 259 (1999) 12

Re-fit of SAMi: SAMi-ISB

• All these **corrections** are relatively **small** but **modify binding energies, neutron and proton distributions, etc.** ⇒ a **re-fit of the interaction is needed**.

• Use **SAMi fitting protocol** (special care for spin-isospin resonances) including all corrections and **find SAMi-ISB**

Table: Saturation properties

SAMi-ISB finite nuclei properties

El.	N	B	R^{exp}	r_c	$\frac{\text{exp}}{\text{r}_c^{\text{exp}}}$	ΔR_{np}
		[MeV]	[MeV]	[fm]	[fm]	[fm]
Ca	28	417.67	415.99	3.49	3.47	0.214
Zr	50	783.60	783.89	4.26	4.27	0.097
Sn	82	1102.75	1102.85	4.73		0.217
Ph	126	1635.78	1636.43	5.50	5.50	0.151

Corrections on E_{IAS} for ²⁰⁸**Pb one by one**

 $\frac{a_{\text{From Skyrme Hamiltonian}}}{a_{\text{In}}}}$ Hamiltonian where the nuclear part is isospin symmetric and V_{ch} is calculated from the ρ_p

 $E_{IAS}^{exp} = 18.83 \pm 0.01$ MeV. *Nuclear Data Sheets* 108, 1583 (2007).

EIAS **with SAMi-ISB**

Phys. Rev. Lett. 120, 202501 (2018)

Measurement of $\Delta r_{np} \rightarrow$ **determine ISB in the nuclear medium**

Prediction: E_{IAS} in the Sn isotopic chain

Phys. Rev. Lett. 120, 202501 (2018)

Conclusions

- The most **promissing observables** to constraint the symmetry energy are those that can be **measured** via processes with little or **no direct influence from the strong force** (e.g. electromagnetic or weak probes).
- Alternatively, E_{IAS} has **no** dependence on the **isospin conserving** part (largest) of the **strong interaction**.
- **EDFs** of common use in nuclear physics show a **linear** dependence between E_{IAS} and Δr_{nn}
- **EDFs** do **not properly** describe the experimental E_{IAS}
- **Modification of** H_{eff} **requires a refit** of the interaction including **new ISB parameters**.
- **One can reconcile good reproduction of experimenatal charge radii, binding energies, E_{IAS}...**
	- **A better knowledge of ISB contributions in the medium may lead to an accurate determination of neutron skin thickness via** E_{IAS} (or the other way around)

Thank you for your attention!