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Outline

● limitations of the telescope method

● a way to go beyond

● is it worth the effort?
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KRATTA module 
active elements

PD0, PD1, PD2 – HAMAMATSU PIN photodiodes for direct detection, 500 μm thickness
Active area: 28×28 mm
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Au+Au @ 400 MeV/nucleon
 

(data and simulations
single telescope placed at 26º)
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ΔE-E (raw exp) Δ E∼
AZ2

E
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ΔE-E (raw exp)
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Protons, UrQMD+Clustering+GEANT4

C
sI

1

C
sI

2



 12

Protons, UrQMD+Clustering+GEANT4
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KRATTA measures ~20% of the energy range 
at 400 AMeV (~60% of the proton yield)

The problem is the 
missing yield
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Protons, UrQMD+Clustering+GEANT4
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Is it possible to recover
the missing 80 and 40%
from the punch-through
hits ???

KRATTA measures ~20% of the energy range 
at 400 AMeV (~60% of the proton yield)
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ΔE-E (raw exp)
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ΔE-E (calibration lines → ATIMA+Light(E))
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ΔE-E (more detailed)
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ΔE-E (punch-through calibration lines → dots every 100 AMeV)
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ΔE-E (punch-through + background)
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ΔE-E (punch-through + background)
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ΔE-E (slices +         fitting sequence)
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Decomposition into                 for 104 slices
protons
deuterons
tritons
background
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Example fits

CsI1 [channels]

~70% p, 
~15% d,
~15% background
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18 parameters (12 fixed), χ2 aloneamplitudes positions widths
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p d t amplitudes

down to here p d t are
~well resolved 
(200-300 AMeV)

p d t energy spectra
for punch-through hits
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18 parameters (12 fixed), χ2 aloneamplitudes positions widths
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p d t amplitudes

each point 
corresponds to a slice

p d t energy spectra
for punch-through hits
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amplitudes positions widths
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p d t energy spectra
for punch-through hits
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χ2 alone is 
not enough

18 parameters (12 fixed), χ2 alone
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REGULARIZATION 
comes at a rescue

Regularization is a process of introducing additional information 
in order to solve an ill-posed problem or to prevent over-fitting. 
It attempts to impose Ockham's razor on the solution to get the 
simplest one.  
(Wikipedia)

min
p⃗

{∑
i=0

N ( f ( xi ; p⃗)− y i )
2

σ i
2

⏟
χ

2

+ λ⋅Cons ( p⃗)}
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REGULARIZATION 
comes at a rescue

min
p⃗

{∑
i=0

N ( f ( xi ; p⃗)− y i )
2

σ i
2 + λ⋅Cons ( p⃗)}

Tikhonov → the simplest 
regularization:

Cons ( p⃗) = | p⃗|2

minimize, in addition to χ2, the length of
the parameter vector.

Regularization is a process of introducing additional information 
in order to solve an ill-posed problem or to prevent over-fitting. 
It attempts to impose Ockham's razor on the solution to get the 
simplest one.  
(Wikipedia)
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amplitudes positions widths
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amplitudes positions widths
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suspicious

?

 χ2 + Tikhonov regularization
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The razor cuts again

min
p⃗

{∑
i=0

N ( f ( xi ; p⃗)− y i )
2

σ i
2 + λ⋅Cons ( p⃗)}

Another try:

Cons ( p⃗) = | p⃗ slice− p⃗slice−1|
2

request that the parameters vary slowly
from slice to slice, starting from the slice
with well resolved peaks. A kind of a Markov-chain.

Regularization is a process of introducing additional information 
in order to solve an ill-posed problem or to prevent over-fitting. 
It attempts to impose Ockham's razor on the solution to get the 
simplest one.  
(Wikipedia)

It makes sense, since we are interested in regular behavior in 
“orthogonal” direction → between slices. 
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But is it better 
than nothing
     ?
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Simulations → Au+Au @ 400 AMeV 
UrQMD+Clustering+GEANT4
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ΔE-E: punch-through + background

UrQMD+GEANT4 Experiment

Note different background intensities
in simulation and in the experiment
(also more double-protons in UrQMD)
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Precision of decomposition

UrQMD+GEANT4 Experiment

Reasonable decomposition up to ~500 AMeV  
Note different proportions
of p d t in simulation and 
in the experiment
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How to select λ? → L-curves

Optimal value of λ ≈ 0.01 for simulations and λ ≈ 0.007 for the experiment
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Key points of the work flow

1) separate the well identified particles from the background (secondary reactions, 
escapes, punch-through, multi-hits) → graphical cuts 

2) perform precise energy calibration using the Energy→Light conversion formula and the 
Range-Energy tables for the well identified particles and using the punch-through points

3) extrapolate of identification lines and the energy calibration for the punch-through 
particles

4) parametrize the background and the signals 

5) fix/restrict as many parameters as possible (at least positions and widths)

6) perform decomposition based on χ2 minimization and regularization for 1D slices

7) find the optimal value of the regularization parameter λ

8) derive the ID-weights from the fitted amplitudes

9) construct the energy spectra using the ID-weights and energy calibration
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Summary and conclusion

● decomposition method with regularization has been applied to 
punch through p d t measured with a telescope method

● it allowed to extend, with a moderate precision, the identification 
and energy calibration from ~130 to at least ~500 MeV/nucleon 
(for the KRATTA module)
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Energy/nucleon calibration curves
for punching-through p d t

E
A

∼
Z 2

Δ E
for sufficiently thin ΔE detector
almost no dependence on A (~2%)

it is possible to calibrate Z=1 (in MeV/nucleon)
without identification → limited utility → can we go beyond?

25 mm CsI 125 mm CsI
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Energy/nucleon calibration
from ΔE in CsI1
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Energy/nucleon calibration
from ΔE in CsI1
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