Generalized Parton Distributions

Carlos Muñoz Camacho

Institut de Physique Nucléaire, CNRS/IN2P3 (France)

Joint workshop of TYL/FJPPL and FKPPL May 9, 2019 (Jeju, South Korea)

Collaborating institutions

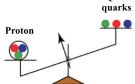
France:

- Institut de Physique Nucléaire d'Orsay
- Departement de Physique Nucléaire (CEA-Saclay)

Korea:

- Seoul National University
- Kyungpook National University

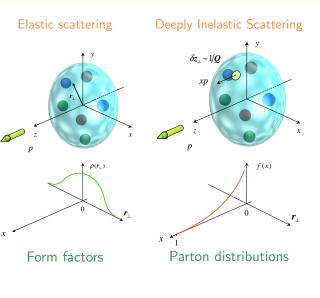
The proton: QCD at work!

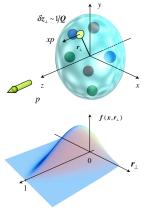

What we know...

- ullet 2 up quarks $(q_u=2/3\ e)+1$ down quark $(q_d=-1/3\ e)$
- any number of quark-antiquark pairs & any number of gluons

$$|p\rangle = |uud\rangle + |uudq\bar{q}\rangle + |uudg\rangle + \dots$$

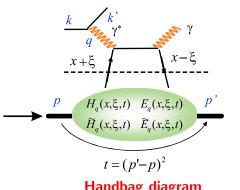
Fundamental questions


- Origin of proton mass?
 - Most of it comes from the motion of quarks & gluons
 - Only a small fraction comes from quark masses
- Origin of proton spin?



OCD

Studying the structure of the nucleon experimentally

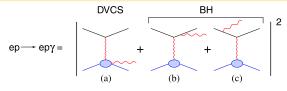


Hard exclusive processes

Generalized Parton
Distributions (GPDs)

Deeply Virtual Compton Scattering (DVCS): $\gamma^* p \rightarrow \gamma p$

High Q^2 Perturbative QCD


Non-perturbative **GPDs**

Handbag diagram

Bjorken limit:

$$\begin{array}{ccc} Q^2 = & -q^2 \to & \infty \\ & \nu & \to & \infty \end{array} \right\} \quad x_B = \frac{Q^2}{2M\nu} \; {\rm fixed}$$

DVCS experimentally: interference with Bethe-Heitler

At leading order in 1/Q (leading twist):

$$\begin{array}{lll} d^5 \stackrel{\rightarrow}{\sigma} - d^5 \stackrel{\leftarrow}{\sigma} & = & \Im m \, (T^{BH} \cdot T^{DVCS}) \\ d^5 \stackrel{\rightarrow}{\sigma} + d^5 \stackrel{\leftarrow}{\sigma} & = & |BH|^2 + \Re e \, (T^{BH} \cdot T^{DVCS}) + |DVCS|^2 \end{array}$$

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i\epsilon} + \dots =$$

$$\mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i\pi H(x = \xi, \xi, t) + \dots$$

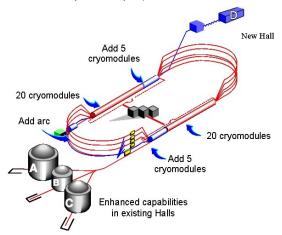
Access in helicity-independent cross section

Access in helicity-dependent cross-section

Accessing different GDPs

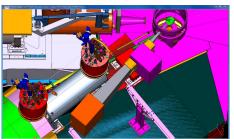
Polarized beam, unpolarized target (BSA)
$$d\sigma_{LU} = \sin\phi \cdot \mathcal{I}m\{F_1\mathcal{H} + x_B(F_1 + F_2)\tilde{\mathcal{H}} - kF_2\mathcal{E}\}d\phi$$

Unpolarized beam, longitudinal target (ITSA)
$$d\sigma_{UL} = \sin\phi \cdot \mathcal{I}m\{F_1\tilde{\mathcal{H}} + x_B(F_1 + F_2)(\tilde{\mathcal{H}} + x_B/2\mathcal{E}) - x_BkF_2\tilde{\mathcal{E}}\dots\}d\phi$$


$$d\sigma_{UL} = \sin\phi \cdot \mathcal{I}m\{F_1\mathcal{H} + x_B(F_1 + F_2)(\mathcal{H} + x_B/2\mathcal{E}) - x_BkF_2\mathcal{E}\dots\}d\phi$$

Polarized beam, longitudinal target (BITSA) $d\sigma_{LL} = (A + B\cos\phi) \cdot \mathcal{R}e\{F_1\tilde{\mathcal{H}} + x_B(F_1 + F_2)(\tilde{\mathcal{H}} + x_B/2\mathcal{E})\dots\}d\phi$

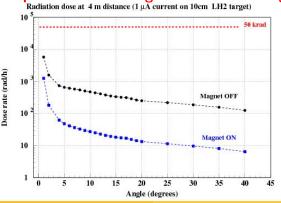
Unpolarized beam, transverse target (tTSA)
$$d\sigma_{UT} = \cos\phi \cdot \mathcal{I}m\{k(F_2\mathcal{H} - F_1\mathcal{E}) + \dots\}d\phi$$

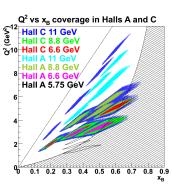

Jefferson Lab: upgraded to 12 GeV

- 6-12 GeV longitudinally polarized (>85%) continuous electron beam
- High intensity (>100 μ A): luminosities > 10^{38} s⁻¹ cm⁻²
- 3 experimental Halls (A, B, C) w/ fixed target and dedicated detectors

Recent collaboration activity: DVCS experiment in Hall C

- Experiment E12-13-010 approved in 2013 with highest scientific rating
- Running planned in ~ 2021
- Requires the construction of a new calorimeter and sweeping magnet

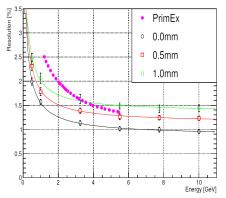



Neutral Particle Spectrometer (NPS) facility

Physics highlights and experimental challenges

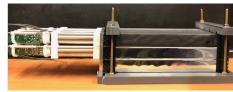
- Energy separation of the DVCS cross section
- Higher Q^2 : measurement of higher twist contributions
- Low x_B extension (thanks to sweeping magnet)

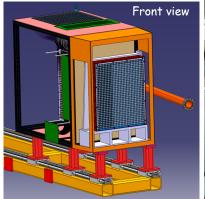
Experimental challenge – radiation damage:



Simulations

- Energy resolution as a function of space between crystals
- Key parameter for the mechanical design of the calorimeter

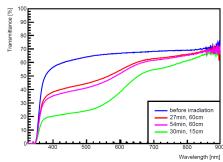

- GEANT4 simulation of setup (1116 PbWO₄ crystals)
- Study of energy resolution
- Estimate of backgrounds
- Calculation of radiation damage



Calorimeter prototype

Goal:

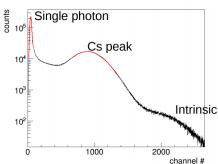
- Test the mechanical assembly,
- calibration system &
- radiation damage recovery

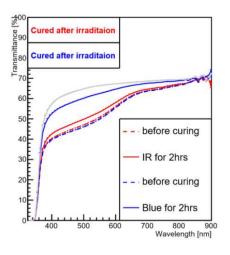


PbWO₄ crystal characterization: radiation hardness

 Crystal transparency/absorption measured using a double-beam optical spectrometer

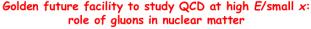
 Longitudinal and transverse transmittance measured as a function of position and radiation dose

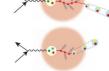


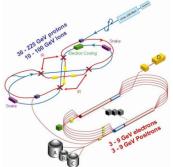

PbWO₄ crystal characterization: light yield

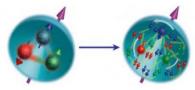
- Using a ¹³⁷Cs source in a temperature controlled chamber
- Light yield studied as a function of position (and temperature)

Optical bleaching of crystals

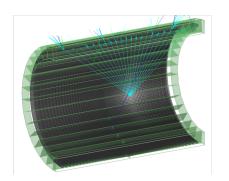

30 Gy dose (at \sim 1 Gy/min):

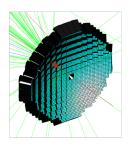

- Infrared curing: less effective but PMTs insensitive
- Blue curing: more efficient but invasive


New project: the Electron-Ion collider


Outstanding questions in QCD:

- > Saturation: new state of hadronic matter
- Distributions of position, momentum, angular momentum...
- > Role of gluons in the nuclear medium




- > e-p/A collisions with EIC:
- ✓ Polarized beams: e, p, d/3He
- ✓ Electron beam: 3-10(20) GeV
- \checkmark Luminosity L_{ep}~ 10^{33-34} cm⁻²s⁻¹ (100-1000 x HERA)
 - ✓ E_{cdm}=20-100 (140) GeV
- ✓ Large choice of nuclei

Future location in United States: Jefferson Lab (VA) or Brookhaven National Lab (NY)

French/Korean collaboration funded by the STAR program

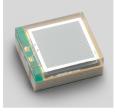
- So far only primary interactions simulated
- Radiation damage from secondary particles produced in the beam and surrounding material is probably the largest contribution.
- ➤ Need to evaluate damage from synchrotron radiation

French/Korean collaboration funded by the STAR program

APD readout:

- · Limited time resolution
- Small gain

SiPM:


- Single photon time resolution (<50ps)
- Linearity and dynamic range (1:50)

Challenges:

- Currently small sizes (little light collection)
- Radiation hardness under investigation

Tasks:

 Extend sensitivity to the UV region (in order to collect more light and increase energy resolution)

- Understand microscopic effects of ionizing radiation (for example, lattice defects with levels in the middle of the band-gap act as recombination/generation centers responsible for the increase in leakage current or as trapping centers reducing the charge collection efficiency)
- 3. Study damage recovery and its dependence on temperature, source of irradiation and on the SiPM operating conditions

High quality PWO crystals with radiation-hard UV-enhanced SiPM would revolutionize state-of-the-art energy and time resolutions for calorimetry applications

Joint PhD supervision

- Co-supervision between IPN-Orsay and SNU
- Awardee of "France Excellence" program funded by the Embassy of France in Korea
- 3-year stay in France (Sep 2017 Sep 2020)

Ho San KO (SNU & Paris-Saclay)

Other activities:

France-Korea-USA workshops on hadron physics

• 2017: https://indico.in2p3.fr/event/14398

2018: https://www.apctp.org/plan.php/Jlab-12GeV

2019: Strong QCD from Hadron Structure Exp's, Nov 6-9 at JLab

Summary

- France–Korea collaboration on hadron physics at JLab (USA)
- Physics goal: 3D structure of the nucleon through GPDs
- Latest efforts focussed on the preparation of an upcoming DVCS experiment in Hall C (to run in 2021)
- \bullet Extension of the R&D program to EIC through the STAR program
- Joint PhD supervision
- Annual workshop organized among France/Korea/USA