Pauli-blocking effects on pion production in heavy-ion collisions

Natsumi Ikeno (Tottori University)

A. Ono (Tohoku Univ.), Y. Nara (Akita International Univ.), A. Ohnishi (YITP)

NuSYM2018 (8th International Symposium on Nuclear Symmetry Energy) 10-13 September 2018, Hanwha Resort, Haeundae, Busan

Pion and Symmetry energy

Pion production and Pauli-blocking effect

*Production of **Pions,** D **resonances**:

-

Formation in NN collisions at early times in the compressed part of the system

 π^- production (main reaction) and π^-

$$
\pi^+
$$
 production (main)

 $pn \rightarrow n\Lambda^{++}$

$$
nn \rightarrow p\Delta^-
$$

$$
\Delta^- \rightarrow n\pi
$$

$$
\Delta^{++} \rightarrow p\pi^+
$$

Pauli blocking factor (1-*f***) for the final nucleon**

ex)

Effect of Pauli-blocking is stronger $\rightarrow \Delta$ and π numbers are smaller

Pauli blocking may play some important role on the pion observables. ⇒ We need to estimate the **Pauli blocking factor (1-f)** precisely

Motivation of our study

• Improved Pauli-blocking procedure by using Wigner function calculated in AMD

for $NN \rightarrow N\Delta$,

 $N\Delta \rightarrow NN$, $\Delta \rightarrow N\pi$

• We like to see how the pion number and ratio change by Pauli-blocking effect

 132 Sn + 124 Sn Collision @E/A=300, 270 MeV

- Experiment at RIKEN/RIBF S_{π} RIT project
- Neutron rich system (N/Z) = 1.56
- -> Final neutron is blocked more strongly than proton
- $\sqrt{2}$ -> π^2/π^+ may change

$$
\frac{\pi^- \text{production}}{nn \to p\Delta^-} \qquad \frac{\pi}{\Delta^-} \to n\pi^-
$$

 π^+ production (main) $pp \rightarrow p\Delta^{++}$ $\Delta^{++} \to p \pi^+$

Transport model (AMD + JAM)

➢ **Our model: JAM coupled with AMD**

 \cdot Nucleon f_{N} : Zeroth order equation

$$
\frac{\partial f_N^{(0)}}{\partial t} + \frac{\partial h_N}{\partial p} \cdot \frac{\partial f_N^{(0)}}{\partial r} - \frac{\partial h_N[f_N^{(0)},0]}{\partial r} \cdot \frac{\partial f_N^{(0)}}{\partial p} = I_N^{\text{el}}[f_N^{(0)},0]
$$
 Solved by AMD

• Δ **particle** f_{Δ} **and pion** f_{π} **: First order equation**
 $\frac{\partial f_{\Delta,\pi}}{\partial t} + \frac{\partial h_{\Delta,\pi}}{\partial p} \cdot \frac{\partial f_{\Delta,\pi}}{\partial r} - \frac{\partial h_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]}{\partial r} \cdot \frac{\partial f_{\Delta,\pi}}{\partial n} = I_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]$ Solved by JAM for given $f_\mathrm{N}^{(0)}$

 \triangleright Coupled equations for $f_{\alpha}(\mathbf{r}, \mathbf{p}, t)$ ($\alpha = N, \Delta, \pi$)

 $I_N[f_N, f_{\Delta, \pi}]$:collision term

$$
\frac{\partial f_N}{\partial t} + \frac{\partial h_N}{\partial p} \cdot \frac{\partial f_N}{\partial r} - \frac{\partial h_N [f_N, f_{\Delta, \pi}]}{\partial r} \cdot \frac{\partial f_N}{\partial p} = I_N [f_N, f_{\Delta, \pi}]
$$
\n
$$
\frac{\partial f_{\Delta, \pi}}{\partial t} + \frac{\partial h_{\Delta, \pi}}{\partial p} \cdot \frac{\partial f_{\Delta, \pi}}{\partial r} - \frac{\partial h_{\Delta, \pi} [f_N, f_{\Delta, \pi}]}{\partial r} \cdot \frac{\partial f_{\Delta, \pi}}{\partial p} = I_N [f_N, f_{\Delta, \pi}]
$$
\n
$$
\frac{\partial f_{\Delta, \pi}}{\partial p} = I_{\Delta, \pi} [f_N, f_{\Delta, \pi}]
$$
\n
$$
I_{\Delta, \pi} [f_N, f_{\Delta, \pi}]
$$
\n
$$
I_{\Delta, \pi} [f_N, f_{\Delta, \pi}]
$$
\n
$$
N \Delta \rightarrow N N
$$
\n
$$
\Delta \rightarrow N N
$$
\n
$$
N \pi \rightarrow \Delta \quad \text{... etc.}
$$

Perturbative treatment of pion and Δ particle production

 $I_N = I_N^{\text{el}}[f_N, 0] + \lambda I_N'[f_N, f_{\Delta, \pi}]$

5 : Δ and pion productions are rare

Transport model (AMD)

- ➢ AMD (Antisymmetrized Molecular Dynamics) A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, PTP87 (1992) 1185
	- AMD wave function at a time *t* for an event

$$
\left\langle \bigotimes \left| \Phi(Z) \right\rangle = \det_{ij} \left[\exp \left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right] \right\}
$$

- With Cluster

 $B₁$

 $N₁$

 N_{2}

 $B -$

C1, C2: N, (2N), (3N), (4N) (up to α cluster)

$$
Z_i = \sqrt{\nu}D_i + \frac{i}{2\hbar \sqrt{\nu}}K_i
$$

$$
\nu : \text{Width parameter} = (2.5 \text{ fm})^{-2}
$$

$$
\chi_{\alpha_i} : \text{Spin-isospin states} = p \uparrow, p \downarrow, n \uparrow, n \downarrow
$$

Solve the time evolution of the wave packet centroids $Z \rightarrow Z$ Effective interaction

- Turn on/off Cluster correlation
	- Without Cluster

 $N1 + N2 \rightarrow N1 + N2$

N1, N2 : Colliding nucleons

6

Transport model (AMD + JAM)

• Nucleon test Particles $f_{\rm AMD}({\bm r},{\bm p}) = \frac{1}{2} \times 2^3 \sum \sum e^{-2\nu({\bm r}-{\bm R}_{jk})^2 -({\bm p}-{\bm P}_{jk})^2/2\hbar^2\nu} B_{jk} B_{kj}^{-1}$

$$
\begin{aligned} \boldsymbol{R}_{jk} &= (\boldsymbol{Z}_j^* + \boldsymbol{Z}_k)/\sqrt{\nu} \\ \boldsymbol{P}_{jk} &= 2i\hbar\sqrt{\nu}(\boldsymbol{Z}_j^* - \boldsymbol{Z}_k) \\ B_{jk} &= \left\langle \varphi_j \left| \varphi_k \right\rangle \right. \end{aligned}
$$

Test particles $({\bf r}_1, {\bf p}_1), ({\bf r}_2, {\bf p}_2), ..., ({\bf r}_A, {\bf p}_A)$

- generated following the Wigner function $f_{\text{AMD}}(\mathbf{r}, \mathbf{p})$
- sent from AMD to JAM at every 2 fm/c with corrections for the conservation of baryon number $\Phi_{\text{AMD}}(t)$ and charge

- ➢ JAM (Jet AA Microscopic transport model) Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, PRC61 (2000) 024901
- Applied to high-energy collisions (1 \sim 158 A GeV)
- Hadron-Hadron reactions are based on experimental data and the detailed balance.
- No mean field (default)
- *s*-wave pion production ($NN \rightarrow NN \pi$) is turned off. ... etc.

Methods for Pauli-blocking factor *f*

➢ **Do Pauli blocking within JAM**

(Natural prescription in AMD+JAM) $N N \rightarrow N \Lambda$

$$
f_{\rm JAM}(\bm{r},\bm{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} e^{-(\bm{r}-\bm{r}_j)^2/2L - 2L(\bm{p}-\bm{p}_j)^2/\hbar^2}
$$

 $l = 2.0$ fm² $\Delta \rightarrow N \pi$ etc.

Pauli blocking factor $1 - f_{JAM}(\mathbf{r}_i, \mathbf{p}'_i)$ calculated for Test particles $\{(\mathbf{r}_i, \mathbf{p}_i);$, j=1,2, ...,A}

A problem is that fluctuation of *f* seems to be large. (Y. Zhang et al., PRC97, 034625 (2018) : Box Homework 1)

 \rightarrow Blocking is less effect

➢ **Use** *f* **of AMD for Pauli blocking**

(reasonable in principle)

Wigner function calculated for the AMD wave function, for τ = neutron or proton, is

$$
f_{\rm AMD}({\bm r},{\bm p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} \sum_{k \in \tau} e^{-2\nu({\bm r} - {\bm R}_{jk})^2 - ({\bm p} - {\bm P}_{jk})^2/2\hbar^2 \nu} B_{jk} B_{kj}^{-1}
$$

 $\boldsymbol{R}_{jk} = (\boldsymbol{Z}_i^* + \boldsymbol{Z}_k)/\sqrt{\nu}$ $P_{jk} = 2i\hbar\sqrt{\nu}(\mathbf{Z}_{j}^{*}-\mathbf{Z}_{k})$ $B_{jk} = \langle \varphi_j | \varphi_k \rangle$

Pauli-blocking factor $1 - f_{\text{AMD}}(\mathbf{r}_i, \mathbf{p}'_i)$ for the final phase-space point $(\mathbf{r}_i, \mathbf{p}'_i)$.

Calculated system and parameters/options

- \triangleright ¹³²Sn + ¹²⁴Sn @E/A=300, 270 MeV 0<b-1
- ➢ 4 options: Pauli blocking procedures
	- f_{JAM} : Pauli blocking factor f_{JAM} is artificially reduced by factor 4
	- (2) f_{JAM} : Do Pauli blocking within JAM
	- (3) $f_{\text{AMD}}^{\text{NNNA}}$: Use Wigner function of AMD for Pauli blocking only for NN↔N \triangle , $\triangle \rightarrow N\pi$ is JAM
	- : Use Wigner function of AMD for Pauli blocking both for NN \leftrightarrow NA and $\Lambda \rightarrow N\pi$ (4) f_{AMD}
- Calculation model:

AMD (4 different nucleon dynamics)

- 1. with cluster (asy-soft)
- 2. with cluster (asy-stiff)
- 3. without cluster (asy-soft)
- 4. without cluster (asy-stiff)

asy-soft : *L*=46 (SLy4) asy-stiff : *L=*108 Effective interaction: Skyrme force

Final $\pi^-\pi^+$ ratio @ E/A=300 MeV

Clear dependence on Pauli blocking

Pion ratios become larger in precise treatment.

In particular when cluster correlation is switched on.

Final pion @ E/A=300 MeV

Pauli-blocking effect is stronger for π^+ than π ⁻. -> Pion ratio goes up by Pauli-blocking effect

12

Dynamics of pion production

- \checkmark Pauli-blocking effect is stronger for π^+ than π ⁻. $nn \leftrightarrow p\Delta^$ $nn \leftrightarrow n\Delta^0$ $\mathsf{p}\mathsf{n} \leftrightarrow \mathsf{p}\Delta^0$ π^- production Why? $- NN \rightarrow N\Delta$ is easy to understand. $-\Delta \rightarrow N\pi$ is more complicated. $pp \leftrightarrow n\Delta^{++}$ π^+ production
	- $\Delta^- \leftrightarrow n\pi^ \Delta^0 \leftrightarrow \mathsf{p}\pi^-$ (2) f_{JAM} vs. (3) f_{AMD}^{NNNA} (3) f_{AMD}^{NNNB} ^{nnna} vs. (4) $f_{\sf AMD}$ $\Delta^{++} \leftrightarrow p \pi^+$ $p\mathsf{n} \leftrightarrow \mathsf{n}\Delta^+$ $\Big\}$ $\Delta^+ \leftrightarrow \mathsf{n}\pi$ $\Delta^+ \leftrightarrow n \pi^+$ $pp \leftrightarrow p\Delta^+$

We compare these cases in reaction process.

 $NN \rightarrow N \Lambda$ $\Delta \rightarrow N\pi$

Pauli-blocking effect for $\Delta \rightarrow N\pi$ E/A=300MeV

Improved Pauli blocking for $\Delta \rightarrow N\pi$

- Δ increases
- π decreases

Increase of numbers is different for the different Δ .

Especially, Δ^- increases largely. $_{15}$

Pauli-blocking effect for $\Delta \rightarrow N\pi$

Comparison of (3) $f_{\text{AMD}}^{\text{NUNA}}$ and (4) f_{AMD} **NNNA**

- Final proton is not blocked so strongly as a neutron
- The changes from (3) to (4) for $\Delta^{0} \rightarrow p\pi^{-}$ and $\Delta^{+} \rightarrow n\pi^{+}$ are smaller than those for $\Delta^{++} \rightarrow p \pi^+$ and $\Delta^{-} \rightarrow n \pi^{-}$.

$$
\int_0^\infty (\Delta \to N\pi) dt \quad \text{and} \quad \int_0^\infty (N\pi \to \Delta) dt \quad \text{with cl., stiff} \xrightarrow{\text{with cl., soft} \xrightarrow{\text{with cl., soft} \xrightarrow{\text{with cl.}} N\text{ to cl.}} N\pi \text{ with cell}} \text{with cell, soft} \xrightarrow{\text{with cl.}} N\pi \text{ with cell} \xrightarrow{\text{with cl.}}
$$

Final pions are considered to be the subtraction of $\Delta \rightarrow N\pi$ and $\Delta \leftarrow N\pi$

with cl., soft π production by $\int_{0}^{\infty} (\Delta \rightarrow N\pi) dt - \int_{0}^{\infty} (N\pi \rightarrow \Delta) dt$ with cl., stiff
w/o cl., soft
w/o cl., stiff

In the balance of $\Delta^0 \rightleftarrows$ p π^- reaction, π^- increases. A small effect in $\Delta \to \mathsf{N}\pi$ can result in a large change of the balance of $\Delta \rightleftarrows \mathsf{N}\pi$.

Summary

- We improved Pauli blocking procedure for NN<->N Δ , $\Delta \rightarrow N\pi$ - AMD Winger, - AMD Wigner (NN<->N \triangle), - JAM, - 1/4 JAM
- We have seen the Pauli-blocking effect for pion production

We found that

- Pion multiplicities and ratios depend on Pauli-blocking effect
- Pauli-blocking effect is stronger for π^+ (Δ^{++}) than $\pi^{-}(\Delta^{-})$ in n-rich system
- The effect of blocking for decay ($\Delta \rightarrow N\pi$) must be understood well.

Future work:

We need to study other treatments for pion observables

 $-\Delta$ resonance production threshold ...

Phase space distribution f_{AMD}

Wigner function $^{132}Sn + {}^{124}Sn@E/A = 300 MeV$

- momentum distribution of final nucleons
- blocking probability *f*

 $NN\rightarrow N\Delta$

Pauli blocking is important for $NN \rightarrow N\Delta$ because the final momentum is relatively low

 $N\Delta$ ->NN

Box HW1 test for JAM

JAM

Fermi distribution $f = \frac{1}{1 + e^{(E-\mu)/T}}$

Test particles are generated from f Then

$$
f_{\rm JAM}(\bm{r},\bm{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} e^{-(\bm{r}-\bm{r}_j)^2/2L - 2L(\bm{p}-\bm{p}_j)^2/\hbar^2}
$$

It is impossible to reconstruct the original *f* from test particles (1 test particle per nucleon)

- ✓ Fluctuation of *f* is large
- ✓ *f* does not reproduce Fermi distribution

 \checkmark *f* is larger than 1 => Pauli blocking is underestimated

 $\overline{22}$ f_{AMD} is free from this problem of fluctuation

Communication between AMD and JAM

- send nucleon information from AMD to JAM in one direction
- AMD accepts a question from JAM, calculates f, and answers it to JAM

Pion Calcutions in central Au+Au collisions

132 Sn + 124 Sn Collision @E/A=300 MeV

 \checkmark Especially symmetry energy effect is weaker if there is cluster correlation

Pion spectra

AMD + JAM with cluster (asy-soft)

 \rightarrow Coulomb effect has almost no effect on the pion multiplicities and the pion ratio.

Potential for Δ and pion

In JAM, reaction thresholds are the same as in free space.

(The production and absorption reactions for Δ and pions occur in the JAM calculation as in the free space)

Nucleons feel potential in the AMD calculation.

Therefore AMD+JAM assumes

$$
NN \leftrightarrow N\Delta \qquad \Delta \leftrightarrow N\pi
$$

$$
U_{\tau_1}^{(N)} + U_{\tau_2}^{(N)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\Delta)}, \qquad U_{\tau_1}^{(\Delta)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\pi)} \qquad \text{for } \tau_1(+\tau_2) = \tau_3 + \tau_4
$$

This is equivalent to the choice in the pBUU calculation

c.f. Hong and Danielewicz, PRC 90 (2014) 024605

$$
v_{asy}(\Delta^-) = 2v_{asy}(n) - v_{asy}(p) = 3v_{asy}(n),
$$

\n
$$
v_{asy}(\Delta^0) = v_{asy}(n),
$$

\n
$$
v_{asy}(\Delta^+) = v_{asy}(p) = -v_{asy}(n),
$$

\n
$$
v_{asy}(\Delta^{++}) = 2v_{asy}(p) - v_{asy}(n) = -3v_{asy}(n).
$$

* Different choice, cf. Bao-An Li $v_{asy}(\Delta^-) = v_{asy}(n),$ $v_{asy}(\Delta^0) = \frac{2}{3}v_{asy}(n) + \frac{1}{3}v_{asy}(p) = \frac{1}{3}v_{asy}(n),$ $v_{asy}(\Delta^+) = \frac{1}{3}v_{asy}(n) + \frac{2}{3}v_{asy}(p) = -\frac{1}{3}v_{asy}(n),$ $v_{asy}(\Delta^{++}) = v_{asy}(p) = -v_{asy}(n).$