# Pauli-blocking effects on pion production in heavy-ion collisions

#### **Natsumi Ikeno (Tottori University)**

```
A. Ono (Tohoku Univ.),
Y. Nara (Akita International Univ.),
A. Ohnishi (YITP)
```



## Pion and Symmetry energy



asy-stiff

#### **Nucleon**

N/Z



**∆** resonance, Pion

 $\Delta^{-}/\Delta^{++}$ ,  $\pi^{-}/\pi^{+}$ 

**Nucleon dynamics** 

 $^{132}$ Sn +  $^{124}$ Sn, E/A = 300 MeV,  $b \sim 0$ 













asy-soft

Interest: High density  $\rho \sim 2\rho_0$ 

ρ [fm<sup>-3</sup>]

SLy4 (L=46 MeV) L=108 MeV



Clear difference of N/Z in high density due to different **S**(ρ)



N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93, 044612 (2016); PRC97, 069902(E) (2018)

- ✓ Delta threshold energy
- ✓ Pion potential
- ✓ Clustering

50

20

Symmetry Energy [MeV]

✓ Pauli blocking ← etc.



## Pion production and Pauli-blocking effect

\* Production of **Pions**,  $\Delta$  resonances:













Formation in NN collisions at early times in the compressed part of the system

 $\pi^-$  production (main reaction)

$$nn \rightarrow \underline{p}\Delta^{-}$$

$$\Delta^{-} \rightarrow n\pi^{-}$$

$$\underline{\pi^+ production}$$
 (main)

$$pp \rightarrow \underline{n}\Delta^{++}$$
 
$$\Delta^{++} \rightarrow \underline{p}\pi^{+}$$

#### Pauli blocking factor (1-f) for the final nucleon

ex)

Effect of Pauli-blocking is stronger ->  $\Delta$  and  $\pi$  numbers are smaller



N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93, 044612 (2016)

Pauli blocking may play some important role on the pion observables.

⇒ We need to estimate the Pauli blocking factor (1-f) precisely



#### Motivation of our study

 Improved Pauli-blocking procedure by using Wigner function calculated in AMD

for 
$$NN \rightarrow N\Delta$$
,  $N\Delta \rightarrow NN$ ,  $\Delta \rightarrow N\pi$ 

 We like to see how the pion number and ratio change by Pauli-blocking effect

```
<sup>132</sup>Sn + <sup>124</sup>Sn Collision @E/A=300, 270 MeV
```

- Experiment at RIKEN/RIBF  $S\pi RIT$  project
- Neutron rich system (N/Z) = 1.56
- -> Final neutron is blocked more strongly than proton
- $-> \pi^-/\pi^+$  may change

$$\begin{array}{c} \underline{\pi^- \, production} \ (main \ reaction) \\ nn \ \rightarrow \ \underline{p} \underline{\Delta^-} \\ \underline{\Delta^- \rightarrow \ n} \underline{\pi^-} \end{array}$$

$$\begin{array}{c} \underline{\pi^{+}\, production} \ \ \, (main) \\ pp \, \rightarrow \, \underline{n} \Delta^{++} \\ \Delta^{++} \, \rightarrow \, p\pi^{+} \end{array}$$

## Transport model (AMD + JAM)

#### Our model: JAM coupled with AMD

• Nucleon  $f_N$ : Zeroth order equation

$$\frac{\partial f_N^{(0)}}{\partial t} + \frac{\partial h_N}{\partial \boldsymbol{p}} \cdot \frac{\partial f_N^{(0)}}{\partial \boldsymbol{r}} - \frac{\partial h_N[f_N^{(0)}, 0]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_N^{(0)}}{\partial \boldsymbol{p}} = I_N^{\text{el}}[f_N^{(0)}, 0]$$



Solved by AMD

•  $\Delta$  particle  $f_{\Delta}$  and pion  $f_{\pi}$ : First order equation

$$\frac{\partial f_{\Delta,\pi}}{\partial t} + \frac{\partial h_{\Delta,\pi}}{\partial \boldsymbol{p}} \cdot \frac{\partial f_{\Delta,\pi}}{\partial \boldsymbol{r}} - \frac{\partial h_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_{\Delta,\pi}}{\partial \boldsymbol{p}} = I_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]$$



Solved by JAM for given  $f_N^{(0)}$ 

 $\triangleright$  Coupled equations for  $f_{\alpha}(\mathbf{r}, \mathbf{p}, t)$  ( $\alpha = N, \Delta, \pi$ )

$$\frac{\partial f_{N}}{\partial t} + \frac{\partial h_{N}}{\partial \boldsymbol{p}} \cdot \frac{\partial f_{N}}{\partial \boldsymbol{r}} - \frac{\partial h_{N}[f_{N}, f_{\Delta, \pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_{N}}{\partial \boldsymbol{p}} = I_{N}[f_{N}, f_{\Delta, \pi}]$$

$$\frac{\partial f_{\Delta, \pi}}{\partial t} + \frac{\partial h_{\Delta, \pi}}{\partial \boldsymbol{p}} \cdot \frac{\partial f_{\Delta, \pi}}{\partial \boldsymbol{r}} - \frac{\partial h_{\Delta, \pi}[f_{N}, f_{\Delta, \pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_{\Delta, \pi}}{\partial \boldsymbol{p}} = I_{\Delta, \pi}[f_{N}, f_{\Delta, \pi}]$$

 $I_{\rm N}[f_{\rm N},f_{\Delta,\pi}]$  :collision term

$$N N \rightarrow N N$$
  
 $N N \rightarrow N \Delta$   
 $N \Delta \rightarrow N N$   
 $\Delta \rightarrow N \pi$   
 $N \pi \rightarrow \Delta$  ... etc.

Perturbative treatment of pion and  $\Delta$  particle production  $N\pi \to \Delta$  ... etc.

$$I_N = I_N^{\text{el}}[f_N, 0] + \lambda I_N'[f_N, f_{\Delta, \pi}]$$

$$I_N=I_N^{
m el}[f_N,0]+\lambda I_N'[f_N,f_{\Delta,\pi}]$$
 
$$egin{pmatrix} f_{\Delta,\pi}=O(\lambda) : \Delta \ ext{and pion productions are rare} \ f_N=f_N^{(0)}+\lambda f_N^{(1)}+... \end{cases}$$

## Transport model (AMD)

> AMD (Antisymmetrized Molecular Dynamics)

A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, PTP87 (1992) 1185

AMD wave function at a time t for an event



$$|\Phi(Z)\rangle = \det_{ij} \left[ \exp \left\{ -\nu \left( \boldsymbol{r}_j - \frac{\boldsymbol{Z}_i}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right]$$

$$Z_i = \sqrt{\nu} D_i + \frac{i}{2\hbar \sqrt{\nu}} K_i$$

 $\nu$ : Width parameter = (2.5 fm)<sup>-2</sup>

 $\chi_{\alpha_i}$  : Spin-isospin states =  $p \uparrow, p \downarrow, n \uparrow, n \downarrow$ 

✓ Effective interaction

- Solve the time evolution of the wave packet centroids Z
- Turn on/off Cluster correlation
  - Without Cluster

$$N1 + N2 -> N1 + N2$$



N1, N2: Colliding nucleons

- With Cluster

$$N1 + B1 + N2 + B2 -> C1 + C2$$



N1, N2: Colliding nucleons

**B1**, **B2**: Spectator nucleons/clusters

C1, C2: N, (2N), (3N), (4N) (up to  $\alpha$  cluster)

Skyrme force

#### Transport model (AMD + JAM)

Nucleon test Particles

$$f_{\text{AMD}}(\boldsymbol{r}, \boldsymbol{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} \sum_{k \in \tau} e^{-2\nu(\boldsymbol{r} - \boldsymbol{R}_{jk})^2 - (\boldsymbol{p} - \boldsymbol{P}_{jk})^2/2\hbar^2\nu} B_{jk} B_{kj}^{-1}$$

$$egin{aligned} & m{R}_{jk} = (m{Z}_j^* + m{Z}_k)/\sqrt{
u} \ & m{P}_{jk} = 2i\hbar\sqrt{
u}(m{Z}_j^* - m{Z}_k) \ & m{B}_{jk} = \langle m{arphi}_j | m{arphi}_k 
angle \end{aligned}$$

Test particles  $(\mathbf{r}_1, \mathbf{p}_1), (\mathbf{r}_2, \mathbf{p}_2), ..., (\mathbf{r}_A, \mathbf{p}_A)$ 

- generated following the Wigner function  $f_{AMD}(\mathbf{r}, \mathbf{p})$
- sent from AMD to JAM at every 2 fm/c with corrections for the conservation of baryon number  $\Phi_{AMD}(t)$  and charge



- > JAM (Jet AA Microscopic transport model)
  Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, PRC61 (2000) 024901
  - Applied to high-energy collisions (1  $\sim$  158 A GeV)
  - Hadron-Hadron reactions are based on experimental data and the detailed balance.
  - No mean field (default)
  - s-wave pion production (NN $\rightarrow$ NN $\pi$ ) is turned off. ... etc.

#### Methods for Pauli-blocking factor *f*

#### Do Pauli blocking within JAM

(Natural prescription in AMD+JAM)

$$f_{\text{JAM}}(\boldsymbol{r}, \boldsymbol{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} e^{-(\boldsymbol{r} - \boldsymbol{r}_j)^2/2L - 2L(\boldsymbol{p} - \boldsymbol{p}_j)^2/\hbar^2}$$

$$N N \rightarrow N \Delta$$

$$\Delta \rightarrow N \pi \quad \text{etc.}$$
 $L=2.0 \text{ fm}^2$ 

Pauli blocking factor  $1 - f_{JAM}(\mathbf{r}_i, \mathbf{p}'_i)$  calculated for Test particles  $\{(\mathbf{r}_j, \mathbf{p}_j); , j=1,2,...,A\}$ 

A problem is that fluctuation of f seems to be large. (Y. Zhang et al., PRC97, 034625 (2018): Box Homework 1)

→ Blocking is less effect

#### Use f of AMD for Pauli blocking

(reasonable in principle)

Wigner function calculated for the AMD wave function, for  $\tau$  = neutron or proton, is

$$f_{\text{AMD}}(\boldsymbol{r}, \boldsymbol{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} \sum_{k \in \tau} e^{-2\nu(\boldsymbol{r} - \boldsymbol{R}_{jk})^2 - (\boldsymbol{p} - \boldsymbol{P}_{jk})^2 / 2\hbar^2 \nu} B_{jk} B_{kj}^{-1}$$

$$egin{aligned} m{R}_{jk} &= (m{Z}_j^* + m{Z}_k)/\sqrt{
u} \ m{P}_{jk} &= 2i\hbar\sqrt{
u}(m{Z}_j^* - m{Z}_k) \ m{B}_{jk} &= \left\langle m{arphi}_j \middle| m{arphi}_k 
ight
angle \end{aligned}$$

Pauli-blocking factor  $1 - f_{AMD}(\mathbf{r}_i, \mathbf{p}_i)$  for the final phase-space point  $(\mathbf{r}_i, \mathbf{p}_i)$ .

## Calculated system and parameters/options

> 132Sn + 124Sn @E/A=300, 270 MeV

0<b<1

4 options: Pauli blocking procedures

(1)  $\frac{1}{4}f_{JAM}$ : Pauli blocking factor  $f_{JAM}$  is artificially reduced by factor 4

(2)  $f_{\rm JAM}$  : Do Pauli blocking within JAM

(3)  $f_{\mathsf{AMD}}^{\mathsf{NNNA}}$  : Use Wigner function of AMD for Pauli blocking

only for NN $\leftrightarrow$ N $\Delta$ ,  $\Delta \rightarrow$ N $\pi$  is JAM

(4)  $t_{\mathsf{AMD}}$  : Use Wigner function of AMD for Pauli blocking

both for NN $\leftrightarrow$ N $\Delta$  and  $\Delta \rightarrow N\pi$ 

#### Calculation model:

AMD (4 different nucleon dynamics)

- 1. with cluster (asy-soft)
- 2. with cluster (asy-stiff)
- 3. without cluster (asy-soft)
- 4. without cluster (asy-stiff)



Effective interaction:

Skyrme force

asy-soft : L=46 (SLy4)

asy-stiff : L=108

#### Final $\pi^-/\pi^+$ ratio @ E/A=300 MeV



Clear dependence on Pauli blocking

Pion ratios become larger in precise treatment.

In particular when cluster correlation is switched on.

## Final pion @ E/A=300 MeV



Pauli-blocking effect is stronger for  $\pi^+$  than  $\pi^-$ .

-> Pion ratio goes up by Pauli-blocking effect

#### E/A=300 MeV and 270 MeV





## Dynamics of pion production

✓ Pauli-blocking effect is stronger for  $\pi^+$  than  $\pi^-$ .

$$\pi^-$$
 production

 $nn \leftrightarrow p\Delta^-$ 

$$\Delta^- \leftrightarrow n\pi^-$$

 $\begin{array}{c} \mathsf{pn} \leftrightarrow \mathsf{p}\Delta^0 \\ \mathsf{nn} \leftrightarrow \mathsf{n}\Delta^0 \end{array}$ 

$$\Delta^0 \leftrightarrow p\pi^-$$

Why?

- $NN \rightarrow N\Delta$  is easy to understand.
- $\Delta \rightarrow N\pi$  is more complicated.

 $\pi^+$  production

 $pp \leftrightarrow n\Delta^{++}$ 

$$\Delta^{++} \leftrightarrow p\pi^{+}$$

$$\begin{array}{c}
\mathsf{pp} \leftrightarrow \mathsf{p}\Delta^+ \\
\mathsf{pn} \leftrightarrow \mathsf{n}\Delta^+
\end{array}$$

$$\Delta^+ \leftrightarrow \mathbf{n}\pi^+$$

We compare these cases in reaction process.

(2) 
$$f_{JAM}$$
 vs. (3)  $f_{AMD}^{NNN\Delta}$   
N N  $\rightarrow$  N  $\Lambda$ 

(3) 
$$f_{AMD}^{NNN\Delta}$$
 vs. (4)  $f_{AMD}$ 

$$\Delta \to N\pi$$

#### Pauli-blocking effect for NN $\rightarrow$ N $\Delta$











Pauli-blocking effect is stronger for the production of  $\Delta^{++}$  than  $\Delta^{-}$ 

n-rich system -> final neutron is blocked more strongly  $pp \rightarrow n\Delta^{++}$ 







Improved Pauli blocking for  $\Delta \rightarrow N\pi$ 

- $\Delta$  increases
- $\pi$  decreases

Increase of numbers is different for the different  $\Delta$ .

Especially,  $\Delta^-$  increases largely. <sub>15</sub>

## Pauli-blocking effect for $\Delta \rightarrow N\pi$

## Comparison of (3) $f_{AMD}^{NNN\Delta}$ and (4) $f_{AMD}$



- Final proton is not blocked so strongly as a neutron
- The changes from (3) to (4) for  $\Delta^0 \to p\pi^-$  and  $\Delta^+ \to n\pi^+$  are smaller than those for  $\Delta^{++} \to p\pi^+$  and  $\Delta^- \to n\pi^-$ .

$$\int_0^\infty (\Delta \to N\pi) dt$$
 and  $\int_0^\infty (N\pi \to \Delta) dt$ 



• Final pions are considered to be the subtraction of  $\Delta \rightarrow N\pi$  and  $\Delta \leftarrow N\pi$ 



$$\pi$$
 production by  $\int_0^\infty (\Delta \to N\pi)dt - \int_0^\infty (N\pi \to \Delta)dt$ 





In the balance of  $\Delta^0 \rightleftharpoons p\pi^-$  reaction,  $\pi^-$  increases.

A small effect in  $\Delta \to N\pi$  can result in a large change of the balance of  $\Delta \rightleftharpoons N\pi$ .

#### Summary

- We improved Pauli blocking procedure for NN<->N $\Delta$ ,  $\Delta$  -> N $\pi$  AMD Winger, AMD Wigner (NN<->N $\Delta$ ), JAM, 1/4 JAM
- We have seen the Pauli-blocking effect for pion production

#### We found that

- Pion multiplicities and ratios depend on Pauli-blocking effect
- Pauli-blocking effect is stronger for  $\pi^+$  ( $\Delta^{++}$ ) than  $\pi^-$  ( $\Delta^-$ ) in n-rich system
- The effect of blocking for decay ( $\Delta -> N\pi$ ) must be understood well.



#### **Future work:**

We need to study other treatments for pion observables

-  $\Delta$  resonance production threshold ...

## Phase space distribution $f_{\rm AMD}$

#### Wigner function



 $^{132}$ Sn +  $^{124}$ Sn@E/A=300 MeV

- momentum distribution of final nucleons
- blocking probability f

 $NN->N\Delta$ 

Pauli blocking is important for NN->N∆ because the final momentum is relatively low

 $N\Delta -> NN$ 

#### Box HW1 test for JAM

#### **JAM**



Fermi distribution

$$f = \frac{1}{1 + e^{(E - \mu)/T}}$$

Test particles are generated from f Then

$$f_{\mathrm{JAM}}(\boldsymbol{r}, \boldsymbol{p}) = \frac{1}{2} \times 2^3 \sum_{j \in \tau} e^{-(\boldsymbol{r} - \boldsymbol{r}_j)^2/2L - 2L(\boldsymbol{p} - \boldsymbol{p}_j)^2/\hbar^2}$$

It is impossible to reconstruct the original f from test particles (1 test particle per nucleon)

- $\checkmark$  Fluctuation of f is large
- ✓ *f* does not reproduce Fermi distribution

✓ f is larger than 1 => Pauli blocking is underestimated

f<sub>AMD</sub> is free from this problem of fluctuation

#### Communication between AMD and JAM



- send nucleon information from AMD to JAM in one direction
- AMD accepts a question from JAM, calculates f, and answers it to JAM

#### Pion Calcutions in central Au+Au collisions



## by transport model (AMD + JAM)

with cluster (asy-soft)





- ✓ Our calculation almost reproduces the experimental data reasonably well
- ✓ Pion ratios are also larger than (N/Z)<sup>2</sup><sub>system</sub>



Exp. Data: Reisdorf *et al.*, NPA 848 (2010) 366

#### <sup>132</sup>Sn + <sup>124</sup>Sn Collision @E/A=300 MeV

#### > Dynamics of neutrons and protons



#### Calculation set:

AMD + JAM

- 1. with cluster (asy-soft)
- 2. with cluster (asy-stiff)
- 3. without cluster (asy-soft)
- 4. without cluster (asy-stiff)
- 5. JAM (no mean field)

asy-soft : L=46 (SLy4)

asy-stiff: L=108



Effective interaction: Skyrme force

- ✓ Density maximum is different for cases with or without cluster
- ✓ Clear difference of N/Z ratio due to different symmetry energy
- ✓ Especially symmetry energy effect is weaker if there is cluster correlation

#### Pion spectra

AMD + JAM with cluster (asy-soft)



- Coulomb effect: Acceleration of  $\pi^+$ Deceleration of  $\pi^-$
- → Changes of pion spectra

|              | $\pi^-$ | $\pi^{\scriptscriptstyle +}$ | $\pi^-/\pi^+$ |
|--------------|---------|------------------------------|---------------|
| with Coulomb | 0.577   | 0.192                        | 3.01(1)       |
| w/o Coulomb  | 0.582   | 0.193                        | 3.02(1)       |

→ Coulomb effect has almost no effect on the pion multiplicities and the pion ratio.

## Potential for $\Delta$ and pion

In JAM, reaction thresholds are the same as in free space.

(The production and absorption reactions for  $\Delta$  and pions occur in the JAM calculation as in the free space)

Nucleons feel potential in the AMD calculation.

Therefore AMD+JAM assumes

$$NN \leftrightarrow N\Lambda$$

$$U_{\tau_1}^{(N)} + U_{\tau_2}^{(N)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\Delta)},$$

$$\Lambda \leftrightarrow N\pi$$

$$U_{\tau_1}^{(\Delta)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\pi)}$$

for 
$$\tau_1(+\tau_2) = \tau_3 + \tau_4$$

This is equivalent to the choice in the pBUU calculation

c.f. Hong and Danielewicz, PRC 90 (2014)

$$v_{asy}(\Delta^{-}) = 2v_{asy}(n) - v_{asy}(p) = 3v_{asy}(n),$$

$$v_{asy}(\Delta^{0}) = v_{asy}(n),$$

$$v_{asy}(\Delta^{+}) = v_{asy}(p) = -v_{asy}(n),$$

$$v_{asy}(\Delta^{++}) = 2v_{asy}(p) - v_{asy}(n) = -3v_{asy}(n).$$

\* Different choice, cf. Bao-An Li

$$v_{asy}(\Delta^{-}) = v_{asy}(n),$$

$$v_{asy}(\Delta^{0}) = \frac{2}{3}v_{asy}(n) + \frac{1}{3}v_{asy}(p) = \frac{1}{3}v_{asy}(n),$$

$$v_{asy}(\Delta^{+}) = \frac{1}{3}v_{asy}(n) + \frac{2}{3}v_{asy}(p) = -\frac{1}{3}v_{asy}(n),$$

$$v_{asy}(\Delta^{++}) = v_{asy}(p) = -v_{asy}(n).$$