

Isospin effects on the nuclear equation of state

A. Chbihi (GANIL)

- EOS and isospin transport
- Experimental results: isospin diffusion and migration
- Comparison to models
- Conclusion

EOS and isospin transport

- HIC at intermediate energies with asymmetric nuclei:
 - production of exotic nuclei with a wide isospin range
 - exploration of nuclear matter under extreme conditions of ρ, P, T and J
 - offer a unique terrestrial tool to produce nuclear matter in a large range of the densities
 - explore the density dependence of the symmetry energy
 - observables Drift and diffusion

Isospin drift / migration and diffusion

- Drift ; Transfer of asymmetry from PLF & TLF to the low density neck region: n-enrichment neck.
- Effect related to $\propto \frac{\partial E_{sym}}{\partial t}$
- It occurs even for same N/Z of the PLF & TLF

Isospin drift and diffusion

- diffusion; exchange between PLF and TLF proceeds towards a direction that tends to equilibrate N/Z.
- depend on the interaction time
 - Long == equilibration
 - Short == partial transparency

Experiments

- ♦ ⁴⁰Ca+⁴⁰Ca N/Z = 1 @ E/A=35 MeV
- ♦ ⁴⁰Ca+⁴⁸Ca N/Z=1.2
- ♦ ⁴⁸Ca+⁴⁰Ca N/Z=1.2
- ♦ ⁴⁸Ca+⁴⁸Ca N/Z=1.4
- VAMOS high acceptance spectrometer, angle 2-7°
 - charge and masse identification (more than 10 isotopes / Z
- INDRA 4π detector, 7-176°
 - Z identification for Z>4
 - Z and A identification for Z<5</p>

VAMOS PLF (E503) or residues (E494s) High Isotopic Resolution

INDRA in coincidence LCP /IMF event characterization (b, excitation energy)

INDRA

NuSYM2018

oratoire commun CEA/DSM

CNRS/IN2P3

beam

Experimental results: Nuclei identified in VAMO Laboratore commun CEA/DSM

Experimental results : isospin diffusion

- Different evolution depending on the N/Z of the system
 - Projectile: available number of neutron in entrance channel
 - Target: isospin diffusion

- V^{PLF}_Z reflect collision dissipation
- Initial N/Z not reached
 - Statistical decay

Comparison to models : isospin diffusion

Abdelouahad Chbihi

Comparison to models : isospin diffusion

- Systems having ⁴⁰Ca as projectile
 - ELIE and AMD are similar
 - Overestimate n-enrichment of fragments
- Systems having 48Ca as projectile
 - > AMD-soft reproduce the data
 - High sensitivity to the EOS for the less dissipative collisions (V_z^{PLF} # V_{proj})
 - $\checkmark\,$ Isospin diffusion reproduced by AMD

Experimental results: isospin migration

• For a given bin of V_Z^{PLF} detected in VAMOS

 $(\langle N \rangle / \langle Z \rangle)_{CP} = \sum_{Nevts} \sum_{v}^{Z} N_{v} / \sum_{Nevts} \sum_{v} Z_{v}$

 $v = {}^{2,3}H, {}^{3,4,6}He, {}^{6,7,8,9}Li, {}^{7,9,10}Be$

Experimental results: isospin migration

Isotopic ratios

- Hierarchy of the isotopic ratios within the n-enrichment of projectile and then the target
- Symmetric systems:
 - n-enrichment of mid-rapidity
 - Direct experimental measurement
 - ✓ Isospin migration

Comparison to models : isospin migration

 The (N/2) CP of light charged particles emitted at mid-rapidity are not reproduced by AMD. Moreover, the n-enrichment of neck is not observed in AMD.

For a given neutron rich nuclei A and neutron poor B, A+A, B+B, A+B reactions

$$\begin{aligned} R_i(X) &= 2 \frac{X - (X_{A+A} + X_{B+B})/2}{X_{A+A} - X_{B+B}}.\\ R(X_{A+A}) &= R(X_{A+B}) = 1 \quad \text{projectile}\\ R(X_{B+B}) &= R(X_{B+A}) = -1 \quad \text{target}\\ R(X_{A+B}) &= R(X_{B+A}) = 0 \quad \text{complet mixing, equilibration} \end{aligned}$$

X = sensitive to the symmetry energy

 $X = \langle N/Z \rangle$ of fragments detected in VAMOS

Imbalance ratio

- preliminary analysis
- interesting observable less sensitive to:
 - secondary decay
 - experimental efficiencies
- It can be compared to different transport models

CNRS/IN2P

Imbalance ratio

- farther analysis as a function of the fragment velocity detected in VAMOS are foreseen
- important evolution of N/Z are expected with the velocity, (V_{PLF} vs V_{neck})
- Imbalance ratio is easier to be compared to different classes of transport models

conclusion

- observation of isospin diffusion in PLF by direct measure of the PLF residue with VAMOS no reconstruction with hypothesis
- Imbalance ratios calculated for N/Z of PLF
 - farther analysis as a function of the fragment velocity detected in VAMOS are foreseen
- observation of isospin migration (thanks to INDRA) in coincidence with VAMOS
- We have a set of data that for the first time measure different isospin sensitive observables in the same reaction.
- The set of data is open to comparison to all transport models engaged to link data to the symmetry energy.

Experimental results: isospin migration

Isotopic ratios

• For a given bin of V_Z^{PLF} detected in VAMOS

 $(\langle N \rangle / \langle Z \rangle)_{CP} = \sum_{Nevts} \sum_{v}^{Z} N_{v} / \sum_{Nevts} \sum_{v} Z_{v}$

 $v = {}^{2,3}H, {}^{3,4,6}He, {}^{6,7,8,9}Li, {}^{7,9,10}Be$

Comparison to models : LCP multiplicities

laboratoire commun CEA/DSM SDIAL CNRS/IN2P3

♦ V_{CM}>0

• Experimental hierarchy of p, 3He and t well reproduced by the models

• Similarly to the experiment no hierarchy observed for d, 4He

Comparison to models : LCP multiplicities

Experimental results: isospin diffusion

⁴⁸Ca+⁴⁸Ca, V_{CM}^{LCP}>0 same behavior than seen for the velocity of the fragments detected in VAMOS

Comparison to models : LCP multiplicities

♦ ⁴⁸Ca+⁴⁸Ca, V_{CM}^{LCP}>0

лa

CNRS/IN2P3

aboratoire commun CEA/DSM

Laboratoire commun CEA/DSM SPIRE CNR5/IN2P3

Experimental results: multiplicity of LCP

$\bullet V_{CM}^{LCP} > 0$

 $< M_i >$ increase when V_Z^{PLF} decrease

- E* increase
- Dissipative collisions
- p, 3He decay n-poor sys
- t, 6He decay n-rich sys
- Hierarchy of <*M_i*>
 - n- richness proj/Target
 - More visible for dissipative collisions

Isospin transport

- Influence the isospin composition of the produced fragments
- Effect of N/Z of system

♦ d, 4He

- ≻ N=Z
- No Hierarchy

EOS and isospin transport

• HIC at intermediate energies:

- production of exotic nuclei with a wide isospin range
- exploration of nuclear matter under extreme conditions of ρ, P, T and J

NEOS and isospin transport

• HIC at intermediate energies:

- production of exotic nuclei with a wide isospin range
- exploration of nuclear matter under extreme conditions of ρ, P, T and J