PMT Test : Gain Scanning

- To adjust the gain for both PMT similarly, 5 PMTs are scanned for several HV Power
- 5 Candidates
 - Previous Week : RD4977, RD6161 (Will be replaced due to low gain)
 - This Week : RD4974, RD6224, RD6201, RD6160

PMT Response Function

• Fitting Function for PMT Response

$$S_{real}(x) = const. \times \begin{bmatrix} \left\{ \frac{1 - w}{\sigma_0 \sqrt{2\pi}} exp\left(-\frac{(x - Q_0)^2}{2\sigma_0^2}\right) + w\theta(x - Q_0) \times \alpha exp\left[-\alpha(x - Q_0)\right] \right\} e^{-\mu} \\ + \sum_{n=1}^{\infty} \frac{\mu^n e^{-\mu}}{n} \times \frac{1}{\sigma_1 \sqrt{2\pi n}} exp\left(-\frac{(x - Q_0 - nQ_1)^2}{2n\sigma_1^2}\right) \end{bmatrix} \end{bmatrix}$$

Fitting Params.	Meanings	Params.
const.	Constant	p0
μ	Expectation Value of Poission Distribution	p1
σ ₁	1st Peak's Standard Dev.	p2
Q ₁	Gain	р3
Qo	Pedestal	p4
0 0	Standard Deviation of Pedestal	p5
W	Probability of Background Process	р6
α	Procedure of Background Procedure	р7

- Serial No.RD6201
- Applied Voltage : -2100 V
- LED : Scanned starting from 1.65 V to 1.68V, every 0.05 V, 100 Hz, 20 ns

- Serial No.RD6201
- Applied Voltage : -2100 V
- LED : Scanned starting from 1.65 V to 1.68V, every 0.05 V, 100 Hz, 20 ns

- Serial No.RD4974
- Applied Voltage : -2150 V
- LED : Scanned starting from 1.65 V to 1.68V, every 0.05 V, 100 Hz, 20 ns

- Serial No.RD4974
- Applied Voltage : -2150 V
- LED : Scanned starting from 1.65 V to 1.68V, every 0.05 V, 100 Hz, 20 ns

- Serial No.RD6224
- Applied Voltage : -2400 V
- LED : Scanned starting from 1.65 V to 1.68V, every 0.05 V, 100 Hz, 20 ns

- Serial No.RD6160
- Applied Voltage : -2300 V
- LED : Scanned starting from 1.62 V to 1.63V, every 0.01 V, 100 Hz, 20 ns

• Summary of the test

Serial No,	Applied HV	Approx.Gain	Etc
RD 6201	-2100V	~ 30	Possible Candidate
RD 4974	-2150V	~ 31.2	Possible Candidate
RD 6224	-2400V	~ 26	Spare
RD 6160	-2300V	~ 24	Spare
RD 4977	-2300V	~ 30.8	Possible Candidate (Former Bottom PMT)

• RD 6201, RD 4974, RD 4977 are considered as possible candidates for the detector

• After the installation, another test will be performed.

Parametres Measurement

- For the most water cherenkov detectors, the main issue is 'attenuation length'
- Some groups studied about...
 - Change in attenuation length due to exposure to the plastic for long time
 - Change in attenuation length due to contamination due to glue
- Experimental Methods differs with the groups but constructing the system for measuring attenuation length using led seems important
 - By plotting ADC mean (for several days) -> Exponential Fit
 - Otherwise, data acquisition of Amplitude vs Time per each day (?)

Parametres Measurement

Backup

• Applied HV : -2300 V. (No. RD 4977)

• LED : Scanned starting from 1.63 V to 1.65V, every 0.05 V, 100 Hz, 20 ns

