How volume and surface instabilities rival in heavy-ion collisions P. Napolitani, M. Colonna

... in three steps :

1) <u>NM</u>: "EOS view": Nucl. interaction leads to clusterisation at $\rho < \rho_{sat}$ \rightarrow microscopic time-dependent view: modelling volume fluctuations (in a one-body approach)

- 2) *open systems* : + surface fluctuations
- 3) *HIC* : volume + surface instabilities → what happens ?

40 fm

BLOB, ³⁶Ar+⁵⁸Ni, 74AMeV, 280fm/c

NuSYM Busan 11 September 2018

Modelling instabilities in mean-field extensions

For one mean-field trajectory
$$n$$
 in τ_{BL} :
Stochastic-TDHF scheme
average coll. term
 $i\hbar \frac{\partial \rho_1^{(n)}}{\partial t} \approx [k_1^{(n)} + V_1^{(n)}, \rho_1^{(n)}] + \overline{I}_{coll}^{(n)} + \delta I_{coll}^{(n)}$
after τ_{BL} , fluctuating coll. term
it yields $\rho_1^{(n)} \rightarrow \{\rho_1^{(n,i)}; \lambda = 1, ..., sub_{\lambda}\}$
[REINHARD, SURAUD ANNPHYS 216 (1992); ANNPHYS 355 (2015)
LACOMBE, REINHARD, SURAUD, DINH ANNPHYS 373 (2016)]
Boltzmann-Langevin One Body
 $\frac{\partial f^{(n)}}{\partial t} - \{h^{(n)}, f^{(n)}\} = I_{UU}^{(n)} + \delta I_{UU}^{(n)} = g \int \frac{d\mathbf{p}_b}{h^3} \int W(AB\leftrightarrow CD) F(AB\rightarrow CD) d\Omega$
transition rate occupancy
 $W(AB\leftrightarrow CD) = |v_A - v_B| \frac{d\sigma}{d\Omega}; F(AB\rightarrow CD) = [(1-f_A)(1-f_B)f_Cf_D - f_Af_B(1-f_C)(1-f_D)]$
 A, B, C, D : extended equal-isospin phase-space portions of size=nucleon
imposed by the variance $f(1 - f)$ in h^3 cells at equilibrium

[NAPOLITANI, COLONNA PLB726 2013; PRC96 (2017)]

Clusterisation in zero-sound conditions in NM

From nuclear matter to open systems

• \underline{NM} : unstable EOS sites \rightarrow \rightarrow dispersion relation : growth rate $\Gamma_{k,vol}$ for volume-unstable modes k

 $1 + \frac{1}{\tilde{F}_0(k,T)} = \frac{\Gamma_{k,\text{vol}}}{kv_F} \arctan\left(\frac{kv_F}{\Gamma_{k,\text{vol}}}\right)$ *k*-distribution presents UV cutoff as a function of the interaction range

 $U \rightarrow U \otimes g(k)$, with $g(k) = e^{-\frac{1}{2}(k\sigma)^2}$ [Colonna,Chomaz PRC49 (1994); Kolomietz,Shlomo PRC60 (1999); Napolitani,Colonna PRC96 (2017)]

- Open systems : surface added \rightarrow ruled by the same interaction term that imposes UV cutoff for k
- \Rightarrow fluctuations also act on surface \rightarrow Rayleigh behaviour in addition to volume perturbations

Implementation

simplified SKM* [GUARNERA, COLONNA, CHOMAZ PLB373 (1996)]

$$\frac{E_{\rm pot}}{A}(\rho) = \frac{A}{2}u + \frac{B}{\sigma+1}u^{\sigma} + \frac{C_{\rm surf}}{2\rho}(\nabla\rho)^2 + \frac{1}{2}C_{\rm sym}(\rho)u\beta^2$$

K=200 MeV (soft); C_{sym}(ρ) = 32(asy-stiff)
 momentum dependence omitted

residual term

• *E*-dependent screened σ_{NN} [Coupland Lynch Tsang Danielewicz Zhang PRC84 (2011) BLOB) $\delta I \rightarrow$ fluct. in full phase space or a simplified form :

SMF) $\delta I \rightarrow$ separately treated as a stochastic force related to U_{ext} \Rightarrow fluctuations projected on spacial ρ or a truncated form :

SMF-collisionless) $\delta I \rightarrow$ from mean-field noise,

no collisional contributions

Simulation of a spinodal process in an open system

To isolate volume perturbations : central coll. at Fermi energy inducing large stopping, isotropy, $\rho \ll \rho_{sat} \rightarrow {}^{136}Xe + {}^{124}Sn 32AMeV$ [Borderie PLB782 (2018)]

- Isoscalar : isotropic disintegration into clusters around C and Ne
- *Isovector*: variance δ² of N' Z' distr. of potential ripples in accordance with the fluctuation-dissipation th. : Y ≈ exp[-(δ²/A') C_{sym}(ρ)/T]
 Distillation behaviour: < N' Z' > more *n*-rich in more volatile phases

Simulation of a Plateau-Rayleigh process in an open system

To isolate surface instabilities : toroidal topologies (!!!!) → symmetric semiperipheral coll. below Fermi energy with heavy system, to keep *T* low and $\rho \sim \rho_{sat}$ → ¹⁹⁷Au+¹⁹⁷Au 15*A*MeV [CHIMERA : SKWIRA-CHALOT ET AL. PRL101 (2008)]

• <u>BLOB</u> : b=[5to6]fm : toroidal-like config. breaks into 2, 3, 4 fragments [SAINTE-MARIE, STAGE (2018)]

• <u>SMF</u> : similar pattern at 23AMeV but fragment separation not achieved [RIZZO COLONNA BARAN DITORO PRC90 (2014)]

Close-up on clusterisation along arc-like formations

¹⁹⁷Au+¹⁹⁷Au, 15*A*MeV, *b*=[5,6], *BLOB*

large rate of ternary/quaternary splits at *t* > 500fm/c
isospin : fission-like, small ∇ρ, no distillation ↔ ρ~ρ_{sat}

Plateau-Rayleigh instability close to normal density

Analytic (lines) :

Ideal dispersion relation for a columnar configuration of radius r (average neck size), associated to the surface tension γ [BROSA GROSSMANN MÜLLER PREP197 (1990)]

 $(\Gamma_{k,\text{surf}})^2 = \frac{\gamma}{\rho r^3} \frac{I_1(kr)}{I_0(kr)} kr(1-k^2r^2)$

• γ should take into account : $\rho_{\rm local}, \rho_n, \rho_p$ [Iida Oyamatsu PRC69 (2004)] and T

<u>Numeric</u> (dots) :

direct cluster-correl. 1st-o analysis : (timing from inhomogeneity growth, geometry from ρ -distributions of nucl. necks)

• Au+Au : Rayleigh process, well distinct from spinodal behaviour (larger times, larger wavelengths)

Phenomenology of "nuclear jets"

To compose conditions for volume

and surface instability :

asymmetric central collisions around (or above) Fermi energies \rightarrow ³⁶Ar+⁵⁸Ni 74AMeV

SMFcl, collisional dissip. / fluct. OFF
1 to 3 IMF among two bulges
neutron flow towards midrapidity

BLOB, all fluctuations activated

Imposing competing conditions : low ρ + high anisotropy

• BLOB vs SMFcl :

Huge $\nabla \rho$ in both approaches, but opposite isospin behaviour (distillation vs migration) reflecting opposite size ordering.

 \bullet BLOB :

significant ρ drop, involving the spinodal region (A > 4) and even below for $d, t, {}^{3}$ He, α

 \rightarrow Dispersion relation can be evaluated (1st o. approx) from the forward section of the stream of clusters from ρ , *T* conditions.

Surface-volume competition in terms of $\rho - k - \Gamma$

• similar to NM calculation at comparable ρ , *T* conditions

• "granular behaviour" : clearly outside of the surface instability region \rightarrow clusterisation from volume instabilities despite the highly deformed topology

- combination of different values of $\rho \rightarrow$ maximum shifts to smaller wavelengths \rightarrow lighter cluster production
- At small *k* possible signature from combination between surface and volume contributions

Conclusions

• *In modelling*, different types of instabilities (surface/volume) act differently on observables (*A* hierarchy, chronology, sizes, isospin...)

 \Rightarrow Disregarding their competition may yield large uncertainties

• In experiments, [speculative !!!] inducing conditions for competing instabilities may be an attempt to prepare systems at low density with custom dynamical conditions (deformation, ρ , T,...)

Overview on dissipative HIC with BLOB

$\frac{fragments}{\text{instability to stretched topologies}}$

clusters (from potential ripples)

