G. Verde, INFN Catania Structure of nuclear systems at the extreme of their existence SHE Be Li He H Ζ n-Halos N Ν

In-medium correlations and structure

- Structure of diluted and hot nuclear matter – Structure interplays with EoS and dynamics
- Tools: particle-particle correlations, **femtoscopy** and **resonance decays**
 - Imaging emitting sources and transport models
 - IMF-IMF correlations: time-scales and charge splitting
 - In-medium structure and clustering with complex light particle correlations
 - Data from MSU and GANIL experiments on Xe+Au and Ar+Ni central collisions

Femtoscopy in nuclear reactions

Final State Interactions + Quantum statistics (if identical)

Intensity interferometry / Femtoscopy

q = mom. of relative motion

Femtoscopy in nuclear reactions

G. Verde et al. Phys. Rev. C65, 054609 (2002)
G. Verde et al. Phys. Rev. C67, 034606 (2002)
G. Verde et al., Phys. Lett. B653, 12 (2007)
G. Verde, A. Chbihi et al., Eur. Phys. J. A30, 81 (2008)
D.A. Brown, P. Danielewicz, Phys. Lett. B470, 33 (1999)
D.A. Brown, P. Danielewcz, Phys. Rev. C64, 014902 (2001)

Intensity interferometry / Femtoscopy

Significant sensitivity to σ_{NN}

Experimental observables sensitive to the Dynamical pre-equilibrium stage

> G. Verde, P. Danielewicz et al. Phys. Rev. C67, 034606 (2002)

Symmetry energy and femtoscopy

Sensitivity determined by effects of Esym on neutron/proton relative emission times at the **early stages of the collision**

IBUU (Texas A&M 2003)

Early dynamical sources: pBUU Vs. Data

Xe+Au E/A=50 MeV (Central)

pBUU simulations

T. Minniti, B. Barker, GV, P. Danielewicz et al. to be submitted

Early dynamical sources: pBUU Vs. Data

Experimental data (LASSA @ MSU)

T. Minniti, B. Barker, GV, P. Danielewicz et al. to be submitted

Early dynamical sources: pBUU Vs. Data

Source size

% of dynamical early emissions

T. Minniti, B. Barker, GV, P. Danielewicz et al. to be submitted

Energy scan of central collisions

INDRA 4p multi-detector

angular coverage $\approx 90\% (4\pi)$ 336 *independent cells* telecopes C₃F₈ gas chamber – Si (300 mm) – CsI (5-14cm)

³⁶Ar + ⁵⁸Ni E/A=32, 40, 52, 63, 74, 84, 95 MeV

Energy scan of central collisions

³⁶Ar + ⁵⁸Ni E/A=32, 40, 52, 63, 74, 84, 95 MeV

- Breakup asymmetry in CM-Forward Vs. CM-Backward Emissions
- Granular projectile fragmentation mechanism (jet) (talk by P. Napolitani)

BLOB (P. Napolitani, M. Colonna)

³⁶Ar + ⁵⁸Ni

E/A=40 MeV

BLOB (P. Napolitani, M. Colonna)

³⁶Ar + ⁵⁸Ni

BLOB (P. Napolitani, M. Colonna)

³⁶Ar + ⁵⁸Ni

BLOB (P. Napolitani, M. Colonna)

³⁶Ar + ⁵⁸Ni E/A=40 MeV

Time-scales

INDRA data

IMF-IMF correlation functions: Coulomb FSI dominates → Emission times (low V_{red})

→ Charge splitting topology

Fragmentation "tomography"

BLOB (P. Napolitani, M. Colonna)

INDRA data

- **Projectile region**: fast emission (explosive) + homogeneous fragmentation
- **Target region**: long time-scales (evaporative)+ inhomogeneous fragmentation

No globally equilibrated mechanism (talk by P. Napolitani)

In-medium resonance decay spectroscopy

Final stage of HIC events

States of ⁸B \rightarrow p+⁷Be

Correlation function:

$$1 + R(E_{rel}) = \frac{Y_{coinc}(^{7}Be, p)}{Y_{evt\ mixing}(^{7}Be, p)}$$

In-medium resonance decay spectroscopy

N + Ag E/A=35 MeV MSU data

⁵ Li	$\rightarrow \alpha + p$	
⁸ Be	$\rightarrow \alpha + \alpha$	
¹² N	→ ¹¹ C + p	
¹⁰ B	\rightarrow ⁶ Li+ α , ⁸ Be+d, ⁹ Be+p	
¹² C	\rightarrow ⁸ Be+ α , α + α + α	
other I	many cases	

- Plenty of resonances → probes of structure properties
- Lifetimes of resonances important (dynamics)

In-medium ⁸Be unbound states

Ar+Ni, E/A=32-95 MeV – central INDRA @ GANIL data

 $1 + R_{\alpha\alpha}(q_{rel}) = \frac{Y_{coinc}(\alpha, \alpha)}{Y_{evt \ mixing}(\alpha, \alpha)}$

 $\alpha - \alpha$ correlations

In-medium ⁸Be unbound states

Ar+Ni, E/A=32-95 MeV – central INDRA @ GANIL data

 $1 + R_{\alpha\alpha}(q_{rel}) = \frac{Y_{coinc}(\alpha, \alpha)}{Y_{evt mixing}(\alpha, \alpha)}$

Thermal model approach

 $Y_{nucl}(E^*) =$

$$= \frac{N}{\pi} e^{-E^*/T} \sum_{i} (2J_i + 1) \left[\frac{\Gamma_i/2}{(E^* - E_i)^2 + \Gamma_i^2/4} \right]$$

Shape of correlation peaks depend on properties of the corresponding unbound states (spin, branching ratios, etc.)

W.P. Tan et al. Phys. Rev. C69, 061304 (2004)

In-medium ⁸Be unbound states

Ar+Ni, E/A=32-95 MeV – central INDRA @ GANIL data

 $1 + R_{\alpha\alpha}(q_{rel}) = \frac{Y_{coinc}(\alpha, \alpha)}{Y_{evt \ mixing}(\alpha, \alpha)}$ 16 **g.s.** 14 12 8.00+1 H(q)+10 8 0.6 **3.04 MeV** 60 80 Q., (MeV/c) 40 100 120 6 4 E/A=52 MeV 2 0<u></u> 50 150 200 100 q_{rel} (MeV/c) $\alpha - \alpha$ correlations

Thermal model approach

 $Y_{nucl}(E^*) =$

$$= \frac{N}{\pi} e^{-E^*/T} \sum_{i} (2J_i + 1) \left[\frac{\Gamma_i/2}{(E^* - E_i)^2 + \Gamma_i^2/4} \right]$$

In-medium ⁸Be unbound states: thermal approach?

Ar+Ni, E/A=32-95 MeV – central INDRA @ GANIL data

 $\frac{3.04\ Population}{g.\ s.\ Population} = \frac{N_{3.04}}{N_{g.s.}} \propto e^{-\Delta E/T}$

In-medium ⁸Be unbound states: thermal approach?

Ar+Ni, E/A=32-95 MeV – central INDRA @ GANIL data

 $\frac{3.04\ Population}{g.\ s.\ Population} = \frac{N_{3.04}}{N_{g.s.}} \propto e^{-\Delta E/T}$

Thermal model does not reproduce data: **overpopulation of excited states**

No globally equilibrated system

Parent decay and resonance regeneration by FSI

<u>D. Dell'Aquila</u>, PhD thesis PRC, in preparation

Parent decay and resonance regeneration by FSI

Multiparticle correlation measurements

FAZIA-INDRA @ GANIL (≈ 2019-2021)

- Isospin and symmetry energy
- In-medium clustering and correlations

You're welcome to collaborate

conclusions

- HIC to explore structure and dynamics of hot and dilute nuclear matter
- Femtoscopic imaging and IMF-IMF correlations
 - space-time probes for transport model simulations: beyond single particle observables
 - p-p in Xe+Au at 50 MeV/nucleon Vs. pBUU sims (Danielewicz)
 - IMF-IMF in Ar+Ni at 32-95 MeV/nucleon Vs. BLOB sims (Napolitani)
- Cluster structure: resonance decays
 - useful tool for nuclear structure & interplays Structure/Dynamics/EoS (spin, branching ratios)
 - higher order probes for transport models... (?)
 - Ex: elpha-alpha correlations in Ar+Ni at 32-95 MeV/nucleon: FSI Vs. Parent decay dynamics
- Look forward to INDRA-FAZIA campaigns @ GANIL