# Universal correlations in the nuclear symmetry energy, slope parameter, and curvature

# Jeremy Holt Texas A&M, College Station

# Supported by:



NuSYM2018, September 10, 2018

# Next-generation observational campaigns of neutron stars



#### Neutron Star Interior Composition Explorer (NICER)

- Combined timing and spectral resolution in the soft X-ray band
- Neutron star radii:  $\pm 5\%$
- Neutron star masses:  $\pm 10\%$

#### LIGO/VIRGO

- Late-inspiral gravitational waveform related to neutron star tidal deformability
- Poster-merger peak frequency sensitive to neutron star radius















Gandolfi, Carlson & Reddy, PRC (2012)

#### Parametrizing the zero-temperature equation of state

$$\frac{E}{A}(\rho,\delta_{np}) = A_0(\rho) + S_2(\rho)\delta_{np}^2 + \underbrace{\sum_{n=2}^{\infty}(S_{2n} + L_{2n}\ln|\delta_{np}|)\delta_{np}^{2n}}_{\text{small}}$$

- Traditionally expand symmetry energy about saturation density:  $S_2(\rho) = J + L\left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{1}{2}K_{sym}\left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \cdots$
- In Fermi liquid theory, symmetry energy related to 2 Landau parameters:

$$S_2(k_F) = \frac{k_F^2}{6m} + \frac{k_F^3}{9\pi^2} \left[3f_0'(k_F) - f_1(k_F)\right]$$

The expression leads to two correlation equations [Holt & Lim, PLB (2018)]:

$$L = 3\rho_0 \left. \frac{dS_2}{d\rho} \right|_{\rho_0} = 3J - S_0 + \frac{\rho_0}{6} \left( 3k_F \frac{df'_0}{dk_F} - k_F \frac{df_1}{dk_F} \right) \right|_{k_F^0}$$
$$K_{\text{sym}} = 9\rho_0^2 \left. \frac{d^2S_2}{d\rho^2} \right|_{\rho_0} = 4L - 12J + 2S_0 + \frac{\rho_0}{6} \left( 3k_F^2 \frac{d^2f'_0}{dk_F^2} - k_F^2 \frac{d^2f_1}{dk_F^2} \right) \right|_{k_F^0}$$

### Parametrizing the zero-temperature equation of state

• Expand about a small reference Fermi momentum  $k_r$ :

$$S_{2}(k_{F}) = \frac{k_{F}^{2}}{6m} + \frac{k_{F}^{3}}{9\pi^{2}} \left[3f_{0}'(k_{F}) - f_{1}(k_{F})\right]$$
$$= \frac{k_{F}^{2}}{6m} + \frac{k_{F}^{3}}{9\pi^{2}} \left[c_{0} + c_{1}\beta + \frac{1}{2}c_{2}\beta^{2}\right] \qquad \beta = \frac{k_{F} - k_{r}}{k_{r}}$$

- At low densities, Fermi liquid parameters should be well constrained by chiral effective field theory
- Logarithmic terms  $\sim \log(1 + 4k_F^2/m_\pi^2)$  in the symmetry energy require  $k_r > 0.9 \,\mathrm{fm}^{-1}$  for the Taylor series to be convergent at saturation density
- Perturbation theory expansion breaks down below similar scale

Therefore choose 
$$egin{array}{c} eta_0 = rac{k_F^0 - k_r}{k_r} \simeq 0.5 \end{array}$$

Symmetry energy slope parameter [Holt & Lim, PLB (2018)] :

$$L = 3\rho_0 \left. \frac{dS_2}{d\rho} \right|_{\rho_0} = 3J - S_0 + \frac{\rho_0}{6} \left( 3k_F \frac{df_0'}{dk_F} - k_F \frac{df_1}{dk_F} \right) \right|_{k_F^0}$$
$$= (3+\gamma)J - (1+\gamma)S_0 - \gamma \frac{\rho_0}{6} \left( c_0 - \eta_1 c_1 + \eta_1 c_2 \right)$$

Likewise for the symmetry energy incompressibility [Holt & Lim, PLB (2018)]:

$$\begin{split} K_{\text{sym}} &= 9\rho_0^2 \left. \frac{d^2 S_2}{d\rho^2} \right|_{\rho_0} = 4L - 12J + 2S_0 + \frac{\rho_0}{6} \left( 3k_F^2 \frac{d^2 f_0'}{dk_F^2} - k_F^2 \frac{d^2 f_1}{dk_F^2} \right) \right|_{k_F^0} \\ &= 5\gamma J - (5\gamma + 2)S_0 - 5\gamma \frac{\rho_0}{6} \left( c_0 - \eta_2 c_1 + \eta_2 c_2 \right) \end{split}$$

Symmetry energy slope parameter [Holt & Lim, PLB (2018)] :

$$L = 3\rho_0 \left. \frac{dS_2}{d\rho} \right|_{\rho_0} = 3J - S_0 + \frac{\rho_0}{6} \left( 3k_F \frac{df'_0}{dk_F} - k_F \frac{df_1}{dk_F} \right) \right|_{k_F^0}$$
$$= (3 + \gamma)J - (1 + \gamma)S_0 - \gamma \frac{\rho_0}{6} \left( c_0 - \eta_1 c_1 + \eta_1 c_2 \right)$$
$$\gamma = 3.7 \qquad \eta_1 = -0.08$$

Likewise for the symmetry energy incompressibility [Holt & Lim, PLB (2018)]:

$$\begin{split} K_{\text{sym}} &= 9\rho_0^2 \left. \frac{d^2 S_2}{d\rho^2} \right|_{\rho_0} = 4L - 12J + 2S_0 + \frac{\rho_0}{6} \left( 3k_F^2 \frac{d^2 f_0'}{dk_F^2} - k_F^2 \frac{d^2 f_1}{dk_F^2} \right) \right|_{k_F^0} \\ &= 5\gamma J - (5\gamma + 2)S_0 - 5\gamma \frac{\rho_0}{6} \left( c_0 - \eta_2 c_1 + \eta_2 c_2 \right) \end{split}$$

Symmetry energy slope parameter [Holt & Lim, PLB (2018)] :

$$L = 3\rho_0 \left. \frac{dS_2}{d\rho} \right|_{\rho_0} = 3J - S_0 + \frac{\rho_0}{6} \left( 3k_F \frac{df'_0}{dk_F} - k_F \frac{df_1}{dk_F} \right) \right|_{k_F^0}$$
$$= (3 + \gamma)J - (1 + \gamma)S_0 - \gamma \frac{\rho_0}{6} \left( c_0 - \eta_1 c_1 + \eta_1 c_2 \right)$$
$$\gamma = 3.7 \qquad \eta_1 = -0.08$$

Likewise for the symmetry energy incompressibility [Holt & Lim, PLB (2018)]:

$$K_{\text{sym}} = 9\rho_0^2 \left. \frac{d^2 S_2}{d\rho^2} \right|_{\rho_0} = 4L - 12J + 2S_0 + \frac{\rho_0}{6} \left( 3k_F^2 \frac{d^2 f_0'}{dk_F^2} - k_F^2 \frac{d^2 f_1}{dk_F^2} \right) \right|_{k_F^0}$$
$$= 5\gamma J - (5\gamma + 2)S_0 - 5\gamma \frac{\rho_0}{6} \left( c_0 - \eta_2 c_1 + \eta_2 c_2 \right)$$
$$\eta_2 = -0.16$$

Symmetry energy slope parameter [Holt & Lim, PLB (2018)] :

$$L = 3\rho_0 \left. \frac{dS_2}{d\rho} \right|_{\rho_0} = 3J - S_0 + \frac{\rho_0}{6} \left( 3k_F \frac{df'_0}{dk_F} - k_F \frac{df_1}{dk_F} \right) \right|_{k_F^0}$$
  
= (3 + \gamma) J - (1 + \gamma) S\_0 - \gamma \frac{\rho\_0}{6} (c\_0 - \eta\_1 c\_1 + \eta\_1 c\_2)  
Universal slope Model-dependent scale shift

Likewise for the symmetry energy incompressibility [Holt & Lim, PLB (2018)]:

$$K_{\text{sym}} = 9\rho_0^2 \left. \frac{d^2 S_2}{d\rho^2} \right|_{\rho_0} = 4L - 12J + 2S_0 + \frac{\rho_0}{6} \left( 3k_F^2 \frac{d^2 f_0'}{dk_F^2} - k_F^2 \frac{d^2 f_1}{dk_F^2} \right) \right|_{k_F^0}$$
  
=  $5\gamma J - (5\gamma + 2)S_0 - 5\gamma \frac{\rho_0}{6} \left( c_0 - \eta_2 c_1 + \eta_2 c_2 \right)$   
Universal slope Model-dependent scale shift

### Comparison to chiral EFT results



- NLO, N2LO, and N3LO potentials (plus N2LO three-body force)
- Predicted correlation slopes agree well with explicit chiral EFT results
- Better theory constraints on low-density Fermi liquid parameters may reduce correlation uncertainties

<u>Application</u>: Infer properties of the nuclear equation of state from neutron star observations... a Bayesian approach

- Construct a model with parameters  $\vec{a}$
- Bayes' Theorem:



- Strategy:
  - Find useful parametrizations for the equation of state
  - Obtain priors from chiral EFT predictions
  - Use laboratory measurements of finite nuclei to obtain likelihood functions and posteriors

# Prior distributions from chiral EFT

$$\frac{E}{A}(\rho, \delta = 0) = \frac{3k_F^2}{10m} + \frac{k_F^3}{9\pi^2} \left(a_0 + a_1\beta + \frac{1}{2}a_2\beta^2 + \frac{1}{6}a_3\beta^3\right)$$

$$a_0 = -3.41 \pm 0.20 \,\mathrm{fm}^2$$

$$a_1 = 6.44 \pm 0.25 \,\mathrm{fm}^2$$

$$a_2 = -1.02 \pm 0.96 \,\mathrm{fm}^2$$

$$a_3 = 21.92 \pm 8.98 \,\mathrm{fm}^2$$

#### Prior distributions from chiral EFT



#### Equations of state from chiral EFT priors



#### Likelihood functions for symmetric nuclear matter

• Parametrization:  $\frac{E}{A}(\rho, \delta = 0) = \frac{3k_F^2}{10m} + \frac{k_F^3}{9\pi^2} \left(a_0 + a_1\beta + \frac{1}{2}a_2\beta^2 + \frac{1}{6}a_3\beta^3\right)$ 

 $\langle K \rangle = 232.65 \text{ MeV}$ 

 $\sigma_K = 7.00 \text{ MeV}$ 

200

220

240

K (MeV)

260

 Average values of a and full covariance matrix from analysis of 200 Skyrme mean field models fitted to nuclear properties

[M. Dutra et al., PRC (2012)]

0.8

Probability Distribution

0.2

0.0 180

17.0

1 (

0.8

Probability Distribution 9.0

0.2

0.0

 $\langle B \rangle = 15.94 \text{ MeV}$ 

 $\sigma_{n_0} = 0.149 \; {\rm MeV}$ 

15.5

16.0

B (MeV)

16.5



Q (MeV)

#### Likelihood functions for pure neutron matter

• Parametrization: 
$$\frac{E}{A}(\rho, \delta = 1) = 2^{2/3} \frac{3k_F^2}{10m} + \frac{k_F^3}{9\pi^2} \left(b_0 + b_1\beta + \frac{1}{2}b_2\beta^2 + \frac{1}{6}b_3\beta^3\right)$$

$$S_{2}(\rho) = \frac{k_{F}^{2}}{6m} + \frac{k_{F}^{3}}{9\pi^{2}} \underbrace{\left(c_{0} + c_{1}\beta + \frac{1}{2}c_{2}\beta^{2} + \frac{1}{6}c_{3}\beta^{3}\right)}_{Correlations among J, L, K_{sym}}$$

$$L = (3 + \gamma)J - (1 + \gamma)S_{0} - \gamma \frac{\rho_{0}}{6} (c_{0} - \eta_{1}c_{1} + \eta_{1}c_{2})$$

$$K_{sym} = 5\gamma J - (5\gamma + 2)S_{0} - 5\gamma \frac{\rho_{0}}{6} (c_{0} - \eta_{2}c_{1} + \eta_{2}c_{2})$$

$$\int_{Correlations among J, L, K_{sym}} \int_{Correlations J,$$

 Derive likelihood functions involving {b<sub>0</sub>, b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub>} for subsequent Bayesian posterior probability distribution

#### Equations of state from posterior probability distributions











#### Summary and outlook

- New era of major observational campaigns to study the properties of neutron stars
- Complementary theoretical models with accurate nuclear physics inputs needed to guide and interpret observations
- Combine properties of finite nuclei with "model independent" predictions from chiral EFT to obtain posterior distribution function for model parameters
- Ultra high-density matter a challenging frontier for *any* theoretical, experimental, or observation investigation

#### Priors from chiral EFT EOS calculations

 $\rho E^{(1)} = \frac{1}{2} \sum_{12} n_1 n_2 \langle 12 | (\overline{V}_{NN} + \overline{V}_{NN}^{\text{med}}/3) | 12 \rangle,$  $\rho E^{(2)} = -\frac{1}{4} \sum_{\text{reff}} |\langle 12|\overline{V}_{\text{eff}}|34\rangle|^2 \frac{n_1 n_2 \bar{n}_3 \bar{n}_4}{e_3 + e_4 - e_1 - e_2},$  $\rho E_{\rm pp}^{(3)} = \frac{1}{8} \sum \langle 12 | \overline{V}_{\rm eff} | 34 \rangle \langle 34 | \overline{V}_{\rm eff} | 56 \rangle \langle 56 | \overline{V}_{\rm eff} | 12 \rangle$  $\times \frac{n_1 n_2 n_3 n_4 n_5 n_6}{(e_3 + e_4 - e_1 - e_2)(e_5 + e_6 - e_1 - e_2)},$  $\rho E_{\rm hh}^{(3)} = \frac{1}{8} \sum \langle 12 | \overline{V}_{\rm eff} | 34 \rangle \langle 34 | \overline{V}_{\rm eff} | 56 \rangle \langle 56 | \overline{V}_{\rm eff} | 12 \rangle$  $\times \frac{\bar{n}_1 \bar{n}_2 n_3 n_4 n_5 n_6}{(e_1 + e_2 - e_3 - e_4)(e_1 + e_2 - e_5 - e_6)},$  $\rho E_{\rm ph}^{(3)} = -\sum \langle 12|\overline{V}_{\rm eff}|34\rangle\langle 54|\overline{V}_{\rm eff}|16\rangle\langle 36|\overline{V}_{\rm eff}|52\rangle$ 123 456  $\times \frac{n_1 n_2 n_3 n_4 n_5 n_6}{(e_3 + e_4 - e_1 - e_2)(e_3 + e_6 - e_2 - e_5)},$ 



#### Symmetric nuclear matter equation of state



### Pure neutron matter uncertainty estimates



#### Sources of uncertainty

- Scale dependence
- Convergence in many-body perturbation theory

#### Pure neutron matter convergence in the chiral expansion



#### Pure neutron matter convergence in the chiral expansion



# Modern theory of nuclear forces

#### **NATURAL SEPARATION OF SCALES**

#### CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions



# Modern theory of nuclear forces

#### **NATURAL SEPARATION OF SCALES**

#### CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions



# Modern theory of nuclear forces

#### **NATURAL SEPARATION OF SCALES**

#### CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions



#### Symmetric nuclear matter at Hartree-Fock level

