Mid Report of NSCL Neutron Detector Experiment Simulation

2017.11.21.Tue Seon Ho Nam

NSCL Neutron Detector (LANA : Large Area Neutron Array)

Picture and Cartoon from NSCL site

Pictured by me (2017.07)

Purpose of NSCL Neutron Detect Experiment and Experimental Detail

- Charged particle can be detected with standard charged particle detector but neutrons are difficult.
- Goal : Clean high quality neutron spectra without charged particle contamination

1. 50 and 100 AMeV deuteron beams on CH2 target

Emission of recoiled proton by d+p reaction and n & p from deuteron break up

-> Test to determine the performance of the veto wall and its effect on neutron detection

2. 120 AMeV 40Ca beam on 5mg/cm^2 Au target

Generate n and charged particles in heavy ion collisions

-> To evaluate the performance of the veto wall in a real heavy ion reaction environment

Primary beam	E/A (MeV/u)	Preparation time (hr)	Secondary beam	E/A (MeV/u)	Tuning time (hr)	Beam on target (hr)	Purpose
¹⁶ O	150	12	d	100	5	16	shake down
			d	100		16	test of CPV + LANA
			d	50	5	16	test of CPV + LANA
⁴⁰ Ca	140	12	⁴⁰ Ca	120	3	12	test of CPV + LANA with HIC
Total		24			13	60	Total Request: 97 hours

Table 1: Breakdown of beam request. Note that the primary beam development for the ⁴⁰Ca beam could be combined with the corresponding time in e14030.

Simulation by Geant 4

25 Neutron Array(behind) and 25 Veto Wall(front)

A Neutron bar for simulation practice

Simulation Process

1.Hit 100 MeV Neutron beam directly to Single Neutron bar

2. Draw X-position to Energy deposition histograms event by event

3. Change dimension of X-axis : Position -> Time

4. Convolution with RCNP electronics Impulse Response

RCNP Impulse Response by Hyun ha Sim

11 Nonzero Energy deposit among 30 events

Future Plans

- 1. Remove minus peak appear in event 11 and 21.
- 2. After finish single simulation, go back to multi layer simulation.
- 3. Consider about deuteron and CH2 target collision.
- 4. Study more about back ground physics.