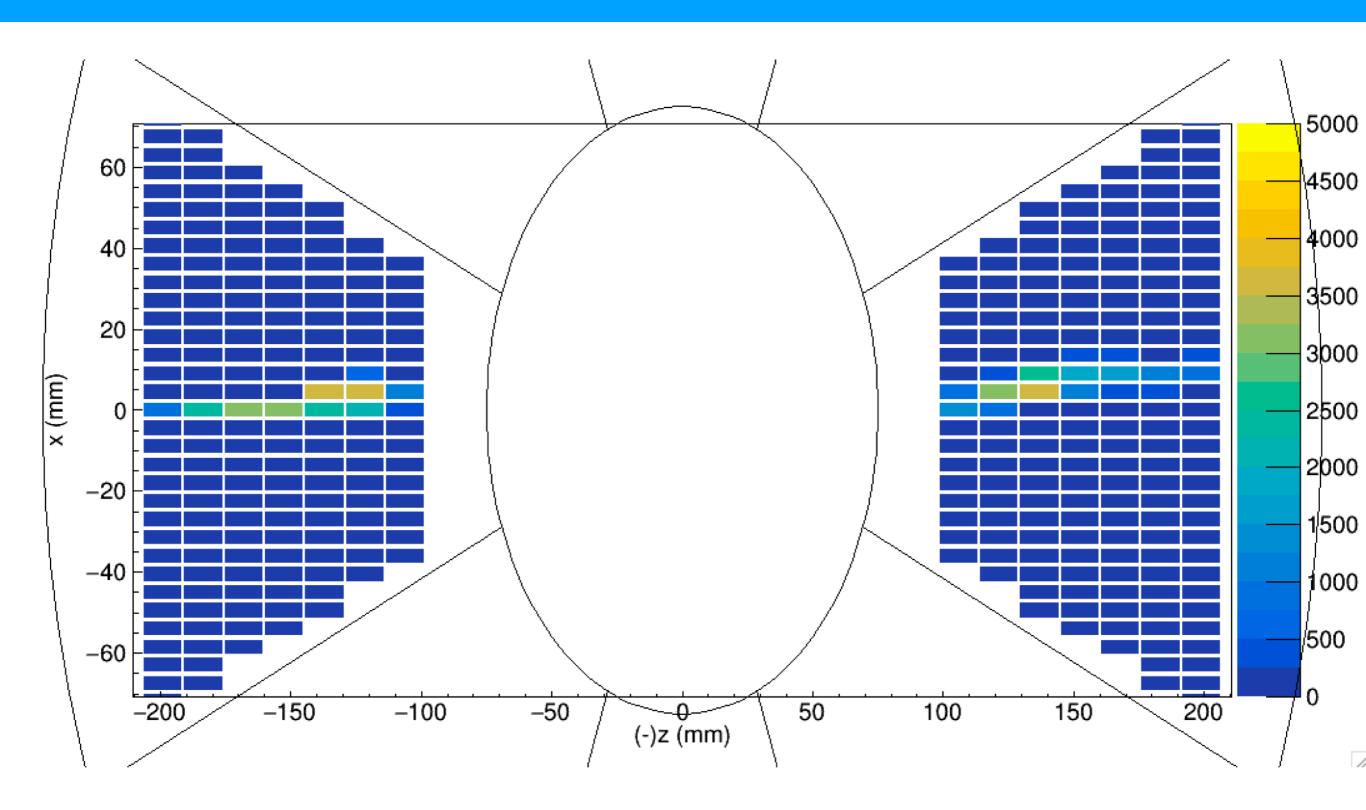
Getting Diffusion Coefficient using LAMPS TPC

Jeonghyeok Park

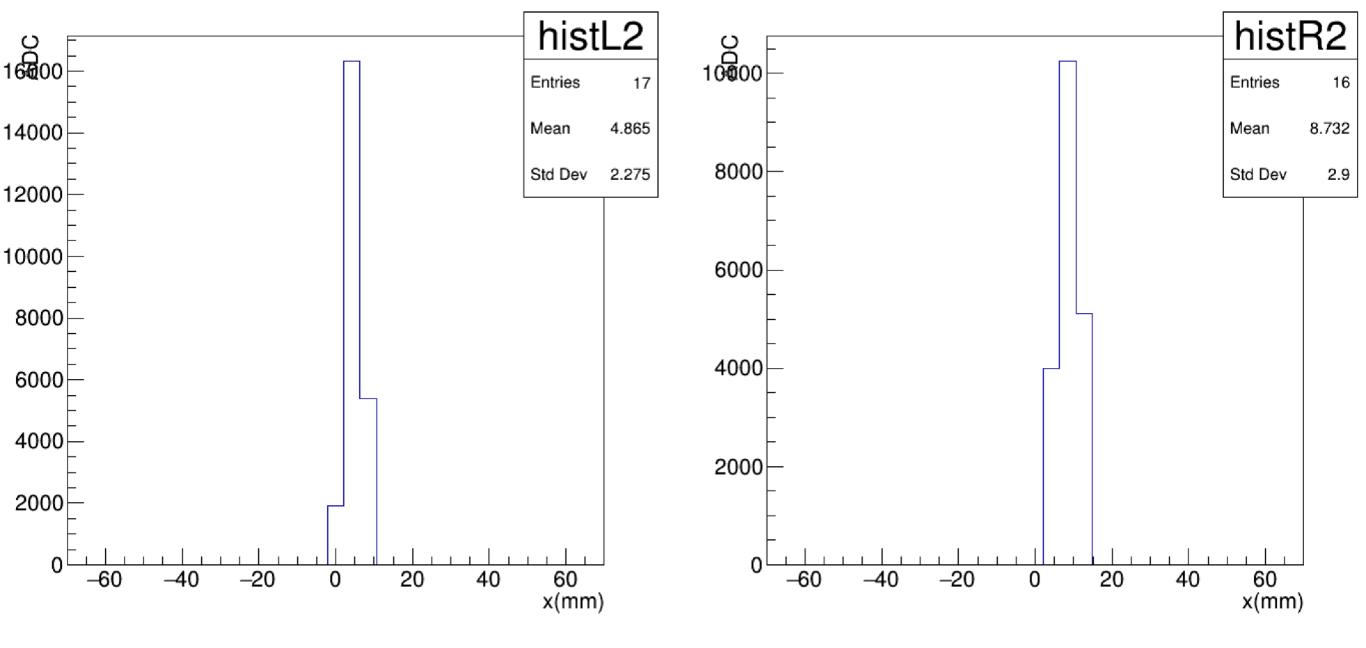
Diffusion Coefficient


ELPH beam summary

Run#	Hbeam	Efield	VGEM	Gain	Tdelay	Frequency	VGEMs	nevt
	(mm,cm)	(V/cm)	(V)	(fC)		(MHz)	(V)	
P10 gas								
93	554(50.24)	115	320	120	1600	25		1770
94		155						3226
95			330					3977
96			340					1514
97			345					1608
98	554(50.24)	155	345	240	1600	25		8579
101		145						6707
103		135						8211
104		125						8291
105		115						8372
107	404(35.24)	115						9902
108		125						8284
110		135						8116
111		145						1632
112		145						8253
113		155						8180
114	254(20.24)	115					330	6372
115	, , ,						330	9370
116		125					335	8200
117		135					340	8894
118		145					345	6640
120		145					345	2167
121	interest and a second	155				and the state of the state of	X	8222
ArCO2	gas							
122	254(20.24)	115	300		1600	25	x	1505
123		115	310					4969
124		155			2600			6705
125		170						15720
126		170					310	6395
127						10	310	1920
128					3600		310	1462
129	254(20.24)	170	310				310	18119
130			320				310	2178
131			330				310	20336
134				1pC			x	1203
135	254(20.24)	170	340					20174
136	` ,		345					9916
137				10pC				9968
	101/05 01)	 	240	1pC	5600			1015
139	404(35.24)		340	1 IpC	5000			TOTO

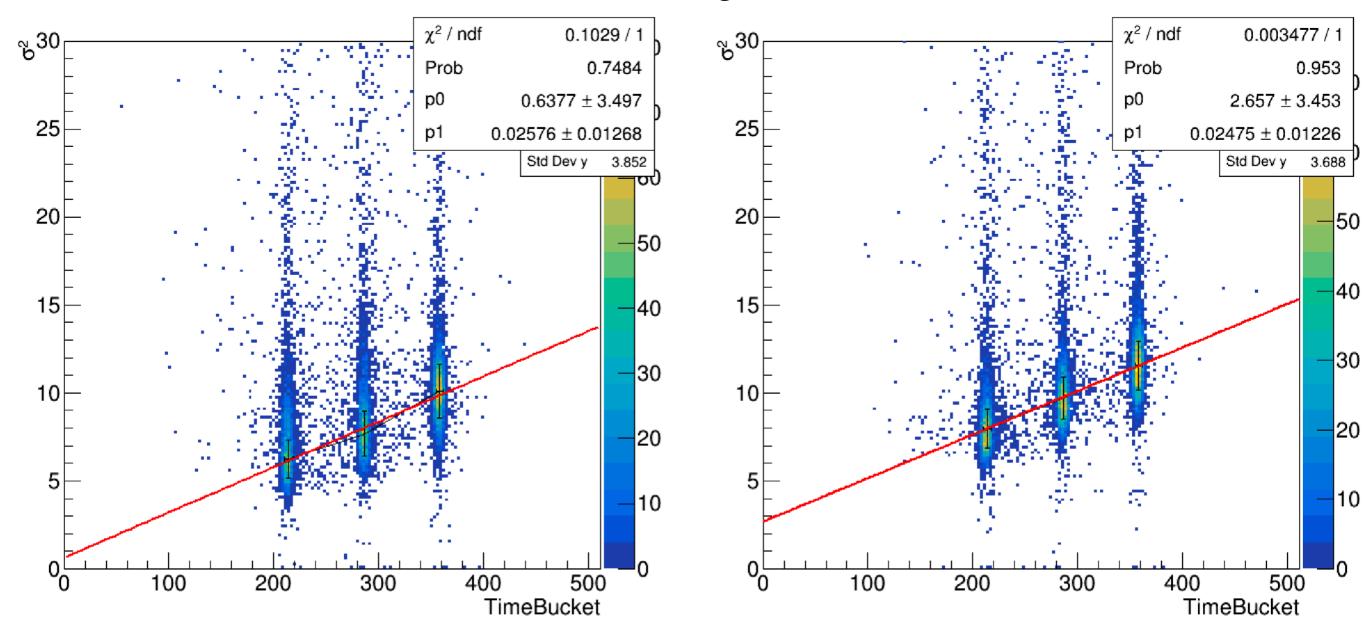
$$\sigma_{track}^2 = D^2 z + \sigma_0^2$$

- We can know how electrons diffuse with the Diffusion Coefficient D.
- Run Number 103, 110, 117 are used for the first analysis.
- In the same Efield(135 V/cm), each beam heights are 554, 404, 254 mm.
- Run Number 101, 112, 120 were used first but the event number was not enough to reconstruct.


PadPlane

Direction of the beam is z-direction. (heading to right direction)

Charge vs x


RunID = 117 & 11th event.

The sigma values of these histograms are used to get the diffusion coefficient D.

σ² vs Drift distance

Run IDs are 117, 110, 103 from the left to right

TimeBucket will be changed into the drift distance to get the exact diffusion coefficient.