Pulse-shape Analysis of the Prototype Neutron Detectors for LAMPS at RAON

MULILO Benard¹, LEE Jong-Won¹, SHIM Hyunah¹, AHN Jung Keun¹, MOON Dongho², HONG Byungsik^{*1}, KIM Minho¹, JO Jamin¹, KIM Young Joon¹, CHOI Wonji¹, PARK KyungHwan², LEE Hanseul² Department of Physics Korea Univ.¹, Department of Physics Chonnam National University.²

1.Outline

Introduction

• High Energy LAMPS

⊙ Neutron Detector Array

Data Collection

ℜ Experimental Set-up

<u>Data Analysis</u>

- Typical Pulse Shape
- Position Dependence of Pulse Shape
- Integrated ADC
- Attenuation Length from Integrated ADC

Summary & Prospect

Benard Mulilo

Korea University

Fall KPS 2017

3.Data Collection

Benard Mulilo

Nuclear Physics Laboratory

Korea University

Fall KPS 2017

Fall KPS 2017

Thousands of raw pulses were processed and superimposed to obtain:

- Total waveform in [a].
- The total waveform was processed and an averaged, normalized, typical waveform [b] was obtained.

Benard Mulilo

Nuclear Physics Laboratory

Korea University

Waveform Delta between two pulses along 1 m-Long Scintillator's Length

Del_Wave_0_0:

is the difference between the pulse at 0 position and the reference pulse at 90 cm.

Del_Wave_0_9:

is the reference pulse. Therefore, delta is zero, that is a flat distribution.

Distortion from reflections²

in interconnecting cables is one of the causes of wave delta.

*William R. Leo, Techniques for Nuclear and Particle Physics Experiments, p244 (1987)*²

Fall KPS 2017

Attenuation Length, λ For 2 m-Long Prototypes

 \Box Attenuation length, λ is understood as the distance (cm) in the material where the intensity of the beam has dropped to 1/e, or about 63% of the particles have been stopped.

❑ This is the Beer-Lambert's law:

$$P(x) = P_o e^{-x/\lambda}$$

Where;

- P(x) is the number of incident radiation.
- P_o is the number of photons reaching the PMT (ADC value)

 $\odot x$ is the path length of the scintillating material.

 \odot λ is the attenuation length and depends on the material and energy.

□ The integrated ADC method was applied in understanding the attenuation length, λ of the current 2 m-long prototypes.

Benard Mulilo

Korea University

5.Summary & Prospect

Summary

- Waveform changes by position as pulse traverses the scintillating material from the interaction point to the photomultiplier tubes.
- Attenuation length for 2 m-long prototypes computed using the integrated ADC method is 335 cm and is of the order of the detector's length.
- Prototypes are suitable for ToF experiment since radiation can be stopped within the active volume.

Prospect

- Control Bergen States State

Korea University

