Energy deposit G.Y.Lim **IPNS/KEK** 24th, May, 2017

Electromagnetic shower

- Electromagnetic calorimeter uses a successive generation of secondaries EM shower.
- 6

High energy photon occurs pair creation dominantly.

High energy electron-positron pair loses its energy by bremsstrahlung.

2

Radiation Length (Xo)

3

Longitudinal shower development

_	_	-
1		
	8	_
	۰.	

Number of secondaries

 $N = 2^t$

Average Energy

 $E(t) = E_0/2^t$

Shower development stops at

$$E(t) = Ec$$

foot notes

4

Critical energy (Ec)

Energy at which a electron losses its energy as same amount by bremsstrahlung and ionization.

Energy at which the ionization loss per Xo is equal to the electron energy.

Atomic and nuclear properties of copper (Cu)								
Quantity	Value	Units	Value	Units				
Atomic number	29							
Atomic mass	63.546(3)	g mole ⁻¹						
Specific gravity	8.960	g cm ⁻³						
Mean excitation energy	322.0	eV						
Minimum ionization	1.403	MeV g ⁻¹ cm ²	12.57	MeV cm ⁻¹				
Nuclear collision length	84.2	g cm ⁻²	9.393	cm				
Nuclear interaction length	137.3	g cm ⁻²	15.32	cm				
Pion collision length	109.3	g cm ⁻²	12.20	cm				
Pion interaction length	165.9	g cm ⁻²	18.51	cm				
Radiation length	12.86	g cm ⁻²	1.436	cm				
Critical energy	19.42	MeV (for e)	18.79	MeV (for e^+)				
Molière radius	14.05	g cm ⁻²	1.568	cm				
Plasma energy $\hbar \omega_p$	58.27	eV						
Muon critical energy	317.	GeV						
Melting point	1358.	К	1085.	С				
Boiling point @ 1 atm	2835.	К	2562.	С				

For muons, dE/dx = a(E) + b(E) E. Tables of b(E): PDF TEXT Table of muon dE/dx and Range: PDF TEXT Explanation of some entries Table of isotopes Warning: may not be current x ray mass attenuation coefficients

terials

>) tables including radiative losses for muons, nuclear and pion ius, plasma energy, and links to isotope and x-ray mass atteunation

aterials.

0

5B 6 13Al 14 31Ga 32 49In 50	C 4 ^{Si} Ge 3	7N 15P 3As	80 16 ^S 34 ^{Se}	9F 17 ^{Cl}	2He 10Ne 18Ar
5 ^B 6 13 ^{Al} 14 31 ^{Ga} 32 49 ^{In} 50	C Si Si Ge 3	7N 15P 3As	80 16 ^S 34 ^{Se}	9F 17Cl	10 ^{Ne} 18 ^{Ar}
13 ^{Al} 14 31 ^{Ga} 32 49 ^{In} 50	Si 3	15 ^P 3 ^{As}	16 ^S	17Cl	18Ar
31 ^{Ga} 32 49 ^{In} 50	Ge 3	3As	34Se	2eBr	W.m.
49In 50				30	3667
	Sn 5	1Sp	52Te	53 <mark>1</mark>	54Xe
81 ^{Tl} 82	Pb	o ^{Bi}	84Po	85At	86 ^{Rn}
113 ^{Nh} 11	4 ^{Fl} 11	5Mc	116 ^{Lv}	117 ^{Ts}	118 <mark>0g</mark>
68 ^{Er} 69	Tm 7	₀ Yb	71 ^{Lu}		
100 ^{Fm}	Md 10	2No	103Lr		

/2016/AtomicNuclearProperties/

Atomic and Nuclear Properties of Materials for more than 300 materials

Click on element or other materal for properties of interest in high-energy physics: stopping power (<-dE/dx>) tables including radiative losses for muons, nuclear and pion collision and interaction lengths, electron, positron, and muon critical energies, radiation length, Moliere radius, plasma energy, and links to isotope and x-ray mass atteunation coefficient tables and plots.

This AtomicNuclearProperties page is upgraded as needed in response to suggestions and requests for new materials. Suggestions and comments are welcome. Please report errors.

Chemical elements: For entries in **mail**, a pull-down menu permits selection of the physical state. Cryogenic liquid densties are at the boiling point at 1 atm.

0 ⁿ																	
1 ^{Ps}																	
$_{1}H$																	₂ He
3Li	4Be											5 ^B	6C	7N	8 O	₉ F	10Ne
11 ^{Na}	12 ^{Mg}											13Al	14 ^{Si}	15P	16 ^S	17Cl	18Ar
19 <mark>K</mark>	20Ca	21Sc	22 ^{Ti}	23 ^V	24Cr	25 ^{Mn}	26Fe	27 ^{Co}	28 ^{Ni}	29 ^{Cu}	30 <mark>Zn</mark>	31Ga	32Ge	33 ^{As}	34 ^{Se}	35Br	₃₆ Kr
37Rb	38 <mark>Sr</mark>	39 Y	40 ^{Zr}	41Nb	42 ^{Mo}	43 ^{Tc}	44Ru	45Rh	46Pd	47Ag	48Cd	49 ^{In}	50 ^{Sn}	51 ^{Sb}	52Te	53 <mark>I</mark>	54Xe
55Cs	56 ^{Ba}	57La	72Hf	73 ^{Ta}	74 ^W	75Re	76 ^{Os}	77 ^{Ir}	78 ^{Pt}	79Au	soHg	81 ^{Tl}	82Pb	83 ^{Bi}	84Po	85At	86Rn
87Fr	88Ra	89Ac	104Rf	105Db	106 ^{Sg}	107 ^{Bh}	108Hs	109 ^{Mt}	110 ^{Ds}	111Rg	112Cn	113 ^{Nh}	114 ^{Fl}	115Mc	116 ^L v	117 ^{Ts}	118 ^{Og}
		58 <mark>Cc</mark>	59Pr	60 Nd	61Pm	62 Sm	63 ^{Eu}	64 ^{Gd}	65 ^{Tb}	66 ^{Dy}	67 ^{Ho}	68 ^{Er}	69 Tm	70Yb	71 ^{Lu}		
		90Th	91Pa	92 <mark>U</mark>	93Np	94Pu	95Am	96 <mark>Cm</mark>	97Bk	98Cf	99Es	100Fm	101 ^{Md}	102 ^{No}	103Lr		

Inorganic compounds (Al through Fe) Inorganic compounds (Freon through Pu) Inorganic compounds (Potassium thru yttrium) Inorganic scintillators (BaF2 through Y2SiO5) Simple organic compounds Polymers

Mixtures

Biological materials

Aluminum axide through ferrous axide	0
and the second s	
Freon through plutonium oxide	
Potassium iodide through water 0	
Barium fluoride through Y2SiO5	0

Acetone through Xylene

Polymers

http://pdg.lbl.gov/2016/AtomicNuclearProperties/

A-mn-dimethyl_formamide through tissue-equivalent gas C

÷

Longitudinal shower development

 \bigcirc

Number of secondaries

$$N = 2^t$$

Average Energy

 $E(t) = E_0/2^t$

Shower development stops at E(t) = Ec

Maximum number of shower particles at which their energy is critical energy ;

8

$$Ec = E_0/2^{t_{max}}$$
 $t_{max} = \ln(\frac{E_0}{Ec})/\ln 2$

foot notes

Energy deposit

Energy deposit
 total integrated charged track

length

 $< T_i(E_0) > = \int_{(i-1)\Delta t}^{i\Delta t} N(E_0, E_{th}, t) dt$

$$\frac{dE}{dx} = E_0 b \frac{(bt)^{(a-1)} e^{-bt}}{\Gamma(a)}$$

$$\mathcal{L}_{max(\frac{dE}{dx})} = (a-1)/b$$

= $\ln(\frac{E_0}{Ec}) + C_2$

 $C_e = -0.5$ $C_\gamma = +0.5$

