Cherenkov radiation

In 1934, P.A. Cherenkov observe new type of luminescence

irradiating gamma rays into uranyl salt.

- Originated by charged particle
- Not to be radiative origin

dx

Observed at a certain angle along particle direction

Refractive indices, Cherenkov threshold values

Material	n-1	β -Schwelle	γ -Schwelle
festes Natrium	3.22	0.24	1.029
Bleisulfit	2.91	0.26	1.034
Diamant	1.42	0.41	1.10
Zinksulfid $(ZnS(Ag))$	1.37	0.42	1.10
Silberchlorid	1.07	0.48	1.14
Flintglas (SFS1)	0.92	0.52	1.17
Bleifluorid	0.80	0.55	1.20
Clerici-Lösung	0.69	0.59	1.24
Bleiglas	0.67	0.60	1.25
Thalliumformiat-Lösung	0.59	0.63	1.29
Szintillator	0.58	0.63	1.29
Plexiglas	0.48	0.66	1.33
Borsilikatglas	0.47	0.68	1.36
Wasser	0.33	0.75	1.52
Aerogel	0.025 - 0.075	0.93 - 0.976	4.5 - 2.7
Pentan (STP)	$1.7 \cdot 10^{-3}$	0.9983	17.2
CO ₂ (STP)	$4.3 \cdot 10^{-4}$	0.9996	34.1
Luft (STP)	$2.93 \cdot 10^{-4}$	0.9997	41.2
H_2 (STP)	$1.4 \cdot 10^{-4}$	0.99986	59.8
He (STP)	$3.3 \cdot 10^{-5}$	0.99997	123

Tabelle 6.2: Cherenkov-Radiatoren [94, 32, 313]. Der Brechungsindex für Gase bezieht sich auf $0^{\circ}C$ und 1 atm (STP). Festes Natrium ist für Wellenlängen unterhalb von 2000 Å transparent [373, 209].

problematic: region between liquids and gases

Aerogel: mixture of m (SiO₂) + 2m (H₂O)

light structure with inclusions of air, bubbles with diameter $< \lambda_{Licht}$

 \rightarrow n: average from n_{air}, n_{SiO2}, n_{H2O}

dE/dx and Particle Identification

Transition radiation (TRD)

Charged particle passes through materials with different dielectric properties

- \rightarrow particle forms dipole with the mirror charge
- \rightarrow dipole changes with time
- \rightarrow radiation
- radiated energy W proportional to the energy of particle!

• with ω_p Plasma frequency

$$\omega_p = \sqrt{\frac{N_e e^2}{\epsilon_e m}} \quad \hbar \omega_p = 20 \, eV$$

• only important for highly relativistic particles

- energy: keV (x-rays)
- + $\theta \propto 1/\gamma$: emission in very forward direction
- probability for photon emission very small \rightarrow many transitions (foils with gaps)
- # photons <N> ~ W / hv ~ O (α)=1/137 α fine structure constant
- energy loss due to TRD negligible for single transition
- important for particle ID at high energies, other effects used for PID $\propto \beta$ ($\beta \approx 1$) Review article: B. Dolgoshein; NIM A 326 (1993) 434

12 14 16 18 20

2 4

Dielectric medium

Air (Vacuum)

Interaction of photons

Interaction of photons

PMT

WAVELENGTH (nm)

PHOTOCATHODE RADIANT SENSITIVITY (mA/W)

Transmission mode photocathodes

		le Window Material	Luminous Sensitivity (Typ.)	Spectral Response				
Curve Code Photocathode (S number) Material	Dhotocothodo			Spectral Range	Peak Wavelength			
	Material				Radiant Sensitivity Quantum Efficiency			
			(µA/Im)	(nm)	(mA/W)	(nm)	(%)	(nm)
100M	Cs-I	MgF2	_	115 to 200	14	140	13	130
200S	Cs-Te	Quartz	—	160 to 320	29	240	14	210
200M	Cs-Te	MgF2	_	115 to 320	29	240	14	200
400K	Bialkali	Borosilicate	95	300 to 650	88	420	27	390
400U	Bialkali	UV	95	185 to 650	88	420	27	390
400S	Bialkali	Quartz	95	160 to 650	88	420	27	390
401K	High temp. bialkali	Borosilicate	40	300 to 650	51	375	17	375
500K (S-20)	Multialkali	Borosilicate	150	300 to 850	64	420	20	375
500U	Multialkali	UV	150	185 to 850	64	420	25	280
500S	Multialkali	Quartz	150	160 to 850	64	420	25	280
501K (S-25)	Multialkali	Borosilicate	200	300 to 900	40	600	8	580
502K	Multialkali	Borosilicate (prism)	230	300 to 900	69	420	20	390
700K (S-1)	Ag-O-Cs	Borosilicate	20	400 to 1200	2.2	800	0.36	740
	GaAsP(Cs)	_	—	300 to 720	180	580	40	540
—	GaAs(Cs)	—	_	380 to 890	85	800	14	760
_	InP/InGaAsP(Cs)	—	_	950 to 1400	21	1300	2.0	1000 to 1300
_	InP/InGaAs(Cs)	_	_	950 to 1700	24	1500	2.0	1000 to 1550

Compton Scattering

$$\begin{split} h\nu &= \frac{h\nu_0}{1 + \left(\frac{h\nu_0}{m_e c^2}\right)(1 - \cos\theta)},\\ E &= h\nu_0 - h\nu = m_e c^2 \frac{2(h\nu_0)^2 \cos^2 \phi}{(h\nu_0 + m_e c^2)^2 - (h\nu_0)^2 \cos^2 \phi},\\ \tan \phi &= \frac{1}{1 + \left(\frac{h\nu_0}{m_e c^2}\right)} \cot \frac{\theta}{2}, \end{split}$$

We can also calculate the recoil kinetic energy (T) spectrum of the electron:

$$\frac{d\sigma}{dT} = \frac{\pi r_e^2}{m_e c^2 \gamma^2} \left(2 + \frac{s^2}{\gamma^2 (1-s)^2} + \frac{s}{(1-s)} (s-\frac{2}{\gamma})\right) \text{ with } s = T/E_{\gamma,in}$$

This cross section is strongly peaked around T_{max} : $T_{max} = E_{\gamma,in} \frac{2\gamma}{1+2\gamma}$ $T_{max} = E_{\gamma,in} \frac{2\gamma}{1+2\gamma}$ $T_{max} = E_{\gamma$

Pair Production

Electromagnetic Shower

Electromagnetic shower

Electromagnetic calorimeter uses a successive generation of secondaries - EM shower.

High energy photon occurs pair creation dominantly.

High energy electron-positron pair loses its energy by bremsstrahlung.

Radiation Length (Xo)

Characteristic amount for energy loss of (high energy) photon and electron
 mean distance over which a electron loses its energy as 1/e by bremsstrahlung
 7/9 of the mean free path for pair

production by a photon

Longitudinal shower development

Number of secondaries

 $N = 2^t$

Average Energy

 $E(t) = E_0/2^t$

Shower development stops at

E(t) = Ec

Radiation Length(Xo)

17

Critical energy (Ec)

Energy at which a electron losses its energy as same amount by bremsstrahlung and ionization.

Energy at which the ionization loss per Xo is equal to the electron energy.

Longitudinal shower development

Maximum number of shower particles at which their energy is critical energy ;

$$Ec = E_0/2^{t_{max}} \qquad t_{max} = \ln(\frac{E_0}{Ec})/\ln 2$$

Energy deposit

Energy deposit \propto total integrated charged track

length

 $\langle T_i(E_0) \rangle = \int_{(i-1)\Delta t}^{i\Delta t} N(E_0, E_{th}, t) dt$

0.125

$$\frac{dE}{dx} = E_0 b \frac{(bt)^{(a-1)} e^{-bt}}{\Gamma(a)}$$

$$\mathcal{E}_{max(\frac{dE}{dx})} = (a-1)/b$$

= $\ln(\frac{E_0}{Ec}) + C_{a}$

 $C_e = -0.5$ $C_\gamma = +0.5$

100

Longitudinal shower shape

Lateral development of EM

Mainly due to multiple
scattering of low energy
electron.

Moirère Radius (R_M)

$$\sim \frac{7A}{Z} [g/cm^2]$$

Hadronic shower

$$\begin{split} \lambda_I &\approx 35 \ g/cm^2 \cdot A^{\frac{1}{3}} \\ N(x) &= N_0 e^{-\frac{x}{\lambda_I}} \end{split} \\ \hline \text{Typical} \\ \text{Transverse size: one } \lambda_{\text{int}} \\ \hline \text{[95\% containment]} \\ \hline \text{[95\% containment]} \\ \hline \text{Typical} \\ \hline \text{Transverse size: one } \lambda_{\text{int}} \\ \hline \text{[95\% containment]} \\ \hline \ \text{[95\% containment]} \\ \hline \text{[95\% containment]} \\ \hline \text{[95\% containment]} \\ \hline \text{[95\% contain$$

	λι	Xo	$R=(\lambda_l/X_0)$		λι	Xo	$R=(\lambda_l/X_0)$
Fe	16.78	1.76	9.54	Scin.	78.93	42.62	1.85
Cu	15.32	1.44	10.68	Csl	38.03	1.86	20.44
Pb	17.59	0.56	31.33	PbWO ₄	20.28	0.89	22.77

Comparison hadronic vs EM showers

Simulated air showers

50