#### Characteristics of the prototype neutron detector for LAMPS evaluated by neutro n beams at RCNP

26thOct 2017 Fall KPS

심현하, 이종원, Benard Mulilo, 안정근, 홍병식 고려대학교 물리학과

2017-10-26 fall kps

1

# Introduction



- ✓Neutron detector array is a part of LAMPS(Large Acceptanc e Multipurpose Spectrometer) that will be installed at the rar e-isotope beam facility, RAON
- ✓ Purpose : study for nuclear symmetry energy and nuclear str ucture of exotic nuclei.

 $\rightarrow$  Measuring neutron energy and number of neutrons is important

#### N0 beam line in RCNP





- ✓ Beam information
- Neutron flux :  $1*10^{10} \text{ n/sr/}\mu\text{C}$
- Beam chopper: 1/9 (600 ns)
- Current : 10 nA
- Energy : 65 MeV, 392MeV
- Target : Li (1cm thick)

✓ P+<sup>7</sup>Li → n + <sup>7</sup>Be

Proton with Li target produce quasi-monoenergetic neutron (g.s. + 0.429 MeV, Q= -1.64 and -2.08 MeV

- ✓ Background neutron above 3MeV is less th an1% (NIM A629 (2011) p43)
- ✓ Electronics FADC 500MSa/s 2017-10-26 fall kps

# **Experimental Setup**





# Waveform (Beam 392MeV)

ADC





2017-10-26 fall kps

Time (ns)

# Neutron energy spectrum (392 MeV)



2017-10-26 fall kps

### Energy resolution

det1 392 MeV



N(peak)7060133

det1

**65 MeV** 

N(peak)3865042

 $\phi_{peak}/\phi_{total}$  ratio with different position

calculate total and peak counts every 5cm length It shows almost constant count region between -15cm and 15cm



|                                                      | lwamoto et al. | lwamoto et al. | This work | this work |
|------------------------------------------------------|----------------|----------------|-----------|-----------|
| Proton energy (MeV)                                  | 246            | 389            | 65        | 392       |
| $\phi_{peak}/\phi_{total}$ (E <sub>n</sub> > 10 MeV) | 0.44           | 0.4            | 0.55      | 0.43      |

NIM A629 (2011) p43

2017-10-26 fall kps

### Efficiency

Beam current : 10 nA detector thickness : 10 cm The neutron intensity of the higher-energy peak is about  $1*10^{10}$ (n/sr/  $\mu$ C)



 $1*10^{10} \text{ n/sr/}\mu\text{C} * (0.03/15^2) * 0.01 \,\mu\text{C/s} = 13333 \text{ n/s}$  case 2

| 65 MeV                                                      | 392 MeV                                        |
|-------------------------------------------------------------|------------------------------------------------|
| 13333 n/s *9322/2 s = 6.213*10 <sup>7</sup>                 | 13333 n/s *6641/2 s = 4.424*10 <sup>7</sup>    |
| 58 <etof 65="" 7.06*10<sup="" :="" <="">6</etof>            | $380 < Etof < 420 : 3.86 \times 10^6$          |
| efficiency : $7.06*10^{6}/6.213*10^{7} = 11.35\%_{2017-10}$ | efficiency : $3.86*10^6/4.424*10^7 = 8.46\%_9$ |
|                                                             | 9                                              |

# Position resolution









- ✓ We tested neutron detector array with FADC at N0 beam lin e of RCNP cyclotron facility 392 MeV, 65 MeV
- ✓ It shows energy resolution of 3.27% at 392 MeV beam
- ✓ position resolution shows 3.12 cm
- ✓ efficiency shows  $8\% \sim 10\%$  for 10cm thick single detector