Performance of New Sampling Calorimeter in the KOTO Experiment

김준이, 이종원, 안정근(고려대), 김은주(전 북대), 임계엽(KEK) for the KOTO Collaboration 2017 KPS Fall Meeting

J-PARC KOTO Experiment

- Br($K_L \rightarrow \pi^0 v \overline{v}$) = (2.8 ± 0.4)×10⁻¹¹ predicted by SM
- FCNC process in Standard model (Suppressed)
- Clean mode to explore the New Physics

New Pb/Scint Calorimeter

- Better suppression of background events
 - 2.96 +/- 0.2(MB) -> 0.46 +/- 0.02(MB+IB)

٠

Inner Barrel

- 25 layers of 1-mm thick Pb sheet and 5-mm thick plastic scintillator
- Add 5X₀ to 13.5X₀

Cosmic Ray Test

- Attenuation curves fitted by two terms.
 - Reconstruction of deposited energy from ADC.
- Superior timing resolution of IB obtained by cosmic-17. **ray**. 2017 Fall KPS

$K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0} Reconstruction$ Using 5y on CsI and 1y on Barrel

- $K_L \to \pi^0 \pi^0 \pi^0$ decay samples with 5ys on CsI and 1y on Barrel Reconstruction of $2\pi^0$ from 4ys on CsI
- 1γ Reconstruction from hit information of Barrel (timing and Module ID)
- Reconstruction of the third π_{2017}^{0} from 1 γ on CsI and 1 γ on Barrel

Reconstruction of Vertex X, Y

Reconstruction Quality

Difference of Vertex Z

Difference of Incident Gamma Energy

$\mathbf{K_L} \rightarrow \pi^{\mathbf{0}} \pi^{\mathbf{0}} \pi^{\mathbf{0}}$ Monte Carlo Generation

2017 Fall KPS

Response Comparison

Good agreement between M.C. and Data

Reconstruction Results

Background	Probability		Detector	Probability
Dalitz Decay of nion	5.25×10^{-6}		Csl	1.04×10^{-3}
balltz becay of pion	3.23×10^{-3}		FB	5.70×10^{-4}
nen. of other Det.	$1.87 \times 10^{\circ}$		Beam Pipe	8.14 × 10 ⁻⁵
Fusion 5.25 × 10 °	5.25 × 10 ⁻⁰		BHPV	1.71×10^{-4}

- Mis-reconstruction due to inefficiency of other detectors.
- Gamma selection with 99.7% accuracy.

Vertex Time Difference

K_L Vertex Time

 Vertex Time Reconstruction with

- Barrel
- Csl Calorimeter
- Vertex Tine Difference

 Invariant

2017 Fall KPS

Timing Resolution from K_L signal

12

Sampling Fraction

Active Active Active Passive Passive Passive Passive

- Sampling Calorimeter collects signal only from Active
 - Plastic scintillator
- Passive induces interaction with high Z number
 - Lead plate

Data/M.C. @ Low S.F.

- Low sampling event selection
 - Gamma Energy > 100 MeV & Deposited Energy < 10 MeV</p>
- Even if in extreme region, agreement between M.C. and Data is shown.

Summary

- Reconstruction of $K_L \to \pi^0 \pi^0 \pi^0$ is done with 99.7% accuracy.
- Fine time and energy calibration are done with clear gamma selection.
- Timing Resolutions of Barrel Detector are evaluated using K_L signal.
 - p0 : 0.13[ns], p1 : 1.1[ns] for Inner Barrel
 - p0 : 0.03[ns], p1 : 2.2[ns] for Main Barrel
- Sampling Fractions of Barrel Detector are determined.

- 0.29(IMB), 0.20(OMB), 0.31(IB)

Deep agreement between M.C. and Data is checked.